Rockfall modelling in high alpine terrain – validation and limitations / Steinschlagsimulation in hochalpinem Raum – Validierung und Limitationen

Abstract The Kitzsteinhorn, Salzburg, represents an ideal environment for rockfall simulations in high mountains due to its local infrastructure, the geological conditions and the presence of permafrost. Through climate change and the associated alteration of the glacier and the distribution of perm...

Full description

Bibliographic Details
Published in:Geomechanics and Tunnelling
Main Authors: Schober, Andreas, Bannwart, Carsten, Keuschnig, Markus
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 2012
Subjects:
Ice
Online Access:http://dx.doi.org/10.1002/geot.201200025
https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2Fgeot.201200025
https://onlinelibrary.wiley.com/doi/pdf/10.1002/geot.201200025
Description
Summary:Abstract The Kitzsteinhorn, Salzburg, represents an ideal environment for rockfall simulations in high mountains due to its local infrastructure, the geological conditions and the presence of permafrost. Through climate change and the associated alteration of the glacier and the distribution of permafrost, mass movements increasingly occur in the form of rockfalls and rock slides. In order to improve the understanding and prediction of these gravitational processes, existing models have to be calibrated and adapted or their results have to be verified. As part of the MOREXPERT project, “Monitoring Expert System for Hazardous Rock Walls” (Rockfall 7.1) and 3D (Rockyfor3D 4.1) rockfall simulations were performed. The results of the 3D simulations could be validated directly using orthophotos. It turned out that the modelling results fit very well with the deposits below the investigation area on the glacier and also with the accumulation of debris in the channels and ledges in the face. The largest factor of uncertainty for both programmes is the coverage of snow and ice, respectively the surface of the glacier. As these parameters change with various time scales (hours to years), any simulation of events in the high mountains only represents a snapshot. In order to obtain an overview of the rockfall danger of the entire investigation area, 3D modelling has proved advantageous in addition to the detailed mapping of the terrain. 2D modelling is also useful for a more detailed understanding of rockfall processes in individual zones of the rock face, and its results are ideal for the design of protection measures. Das Kitzsteinhorn, Salzburg, stellt aufgrund der örtlichen Infrastruktur, den geologischen Gegebenheiten und des Vorkommens von Permafrost ein ideales Umfeld für eine Steinschlagsimulation im Hochgebirge dar. Durch den Klimawandel und den damit verbundenen Veränderungen der Gletscher und der Permafrostverteilung, treten zunehmend Massenbewegungen in Form von Steinschlägen und Felsstürzen auf. Um diese ...