Evolution of apetaly in the cosmopolitan genus Stellaria

Premise Apetaly is widespread across distantly related lineages of flowering plants and is associated with abiotic (or self‐) pollination. It is particularly prevalent in the carnation family, and the cosmopolitan genus Stellaria contains many lineages that are hypothesized to have lost petals from...

Full description

Bibliographic Details
Published in:American Journal of Botany
Main Authors: Sharples, Mathew T., Bentz, Philip C., Manzitto‐Tripp, Erin A.
Other Authors: Botanical Society of America, National Science Foundation
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 2021
Subjects:
Online Access:http://dx.doi.org/10.1002/ajb2.1650
https://onlinelibrary.wiley.com/doi/pdf/10.1002/ajb2.1650
https://onlinelibrary.wiley.com/doi/full-xml/10.1002/ajb2.1650
https://bsapubs.onlinelibrary.wiley.com/doi/am-pdf/10.1002/ajb2.1650
Description
Summary:Premise Apetaly is widespread across distantly related lineages of flowering plants and is associated with abiotic (or self‐) pollination. It is particularly prevalent in the carnation family, and the cosmopolitan genus Stellaria contains many lineages that are hypothesized to have lost petals from showy petalous ancestors. But the pollination biology of apetalous species of Stellaria remains unclear. Methods Using a substantial species‐level sampling (~92% of known taxonomic diversity), we describe the pattern of petal evolution within Stellaria using ancestral character state reconstructions. To help shed light on the reproductive biology of apetalous Stellaria , we conducted a field experiment at an alpine tundra site in the southern Rocky Mountains to test whether an apetalous species ( S. irrigua ) exhibits higher levels of selfing than a sympatric, showy petalous congener ( S. longipes ). Results Analyses indicated that the ancestor of Stellaria was likely showy petalous and that repeated, parallel reductions of petals occurred in clades across much of the world, with uncommon reversal back to showy petals. Field experiments supported high rates of selfing in the apetalous species and high rates of outcrossing in the petalous species. Conclusions Petal loss is rampant across major clades of Stellaria and is potentially linked with self‐pollination worldwide. Self‐pollination occurs within the buds in S. irrigua , and high propensities for this and other forms of selfing known in many other taxa of arctic‐alpine habitats may reflect erratic availability of pollinators.