Differential Effects of Adult Salmon Lice Lepeophtheirus salmonison Physiological Responses of Sockeye Salmon and Atlantic Salmon
Abstract The salmon louse Lepeophtheirus salmonis , a type of sea lice (family Caligidae), is enzootic in marine waters of British Columbia and poses a health risk to both farmed Atlantic Salmon Salmo salar and wild Pacific salmon Oncorhynchus spp. At the adult stage, sea lice infections can often r...
Published in: | Journal of Aquatic Animal Health |
---|---|
Main Authors: | , , |
Other Authors: | |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Wiley
2018
|
Subjects: | |
Online Access: | http://dx.doi.org/10.1002/aah.10053 https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2Faah.10053 https://onlinelibrary.wiley.com/doi/pdf/10.1002/aah.10053 https://onlinelibrary.wiley.com/doi/full-xml/10.1002/aah.10053 https://afspubs.onlinelibrary.wiley.com/doi/pdf/10.1002/aah.10053 |
Summary: | Abstract The salmon louse Lepeophtheirus salmonis , a type of sea lice (family Caligidae), is enzootic in marine waters of British Columbia and poses a health risk to both farmed Atlantic Salmon Salmo salar and wild Pacific salmon Oncorhynchus spp. At the adult stage, sea lice infections can often result in severe cutaneous lesions in their salmonid hosts. To evaluate and compare the physiological consequences of adult L. salmonis infections, smolts of Atlantic Salmon and Sockeye Salmon O. nerka were exposed to 2 (low), 6 (medium), or 10 (high) adult female lice/fish. Mean lice abundance decreased over time in all groups. Skin disruption due to parasite infection was observed in both species. Plasma samples were collected from infected fish and uninfected controls at 1, 3, 5, and 7 d postinfection and measured for indicators of osmoregulatory function and stress. Sockeye Salmon, regardless of L. salmonis exposure level, showed a rapid onset of elevated osmolality and sodium and chloride ion concentrations which were sustained until 7 d postinfection when values returned to levels comparable with the unexposed controls. Conversely, these effects were not measured in Atlantic Salmon. Additionally, differential host effects in blood glucose levels were observed, with Sockeye Salmon displaying immediate elevation in glucose. Relative to Atlantic Salmon, infection with L. salmonis caused a profound physiological impact to Sockeye Salmon characterized by loss of osmoregulatory integrity and a stress response. This work provides the first comprehensive report of the physiological consequences of infections with adult L. salmonis in Sockeye Salmon smolts and helps to further define the mechanisms of susceptibility in this species. |
---|