Record winter winds in 2020/21 drove exceptional Arctic sea ice transport

Abstract The volume of Arctic sea ice is in decline but exhibits high interannual variability, which is driven primarily by atmospheric circulation. Through analysis of satellite-derived ice products and atmospheric reanalysis data, we show that winter 2020/21 was characterised by anomalously high s...

Full description

Bibliographic Details
Published in:Communications Earth & Environment
Main Authors: Mallett, R. D. C., Stroeve, J. C., Cornish, S. B., Crawford, A. D., Lukovich, J. V., Serreze, M. C., Barrett, A. P., Meier, W. N., Heorton, H. D. B. S., Tsamados, M.
Format: Article in Journal/Newspaper
Language:English
Published: Springer Science and Business Media LLC 2021
Subjects:
Online Access:http://dx.doi.org/10.1038/s43247-021-00221-8
https://www.nature.com/articles/s43247-021-00221-8.pdf
https://www.nature.com/articles/s43247-021-00221-8
Description
Summary:Abstract The volume of Arctic sea ice is in decline but exhibits high interannual variability, which is driven primarily by atmospheric circulation. Through analysis of satellite-derived ice products and atmospheric reanalysis data, we show that winter 2020/21 was characterised by anomalously high sea-level pressure over the central Arctic Ocean, which resulted in unprecedented anticyclonic winds over the sea ice. This atmospheric circulation pattern drove older sea ice from the central Arctic Ocean into the lower-latitude Beaufort Sea, where it is more vulnerable to melting in the coming warm season. We suggest that this unusual atmospheric circulation may potentially lead to unusually high summer losses of the Arctic’s remaining store of old ice.