Assessing the impact of suppressing Southern Ocean SST variability in a coupled climate model

Abstract The Southern Ocean exerts a strong influence on global climate, regulating the storage and transport of heat, freshwater and carbon throughout the world’s oceans. While the majority of previous studies focus on how wind changes influence Southern Ocean circulation patterns, here we set out...

Full description

Bibliographic Details
Published in:Scientific Reports
Main Authors: Purich, Ariaan, Boschat, Ghyslaine, Liguori, Giovanni
Other Authors: ARC Centre of Excellence for Climate Extremes
Format: Article in Journal/Newspaper
Language:English
Published: Springer Science and Business Media LLC 2021
Subjects:
Online Access:http://dx.doi.org/10.1038/s41598-021-01306-2
https://www.nature.com/articles/s41598-021-01306-2.pdf
https://www.nature.com/articles/s41598-021-01306-2
Description
Summary:Abstract The Southern Ocean exerts a strong influence on global climate, regulating the storage and transport of heat, freshwater and carbon throughout the world’s oceans. While the majority of previous studies focus on how wind changes influence Southern Ocean circulation patterns, here we set out to explore potential feedbacks from the ocean to the atmosphere. To isolate the role of oceanic variability on Southern Hemisphere climate, we perform coupled climate model experiments in which Southern Ocean variability is suppressed by restoring sea surface temperatures (SST) over 40°–65°S to the model’s monthly mean climatology. We find that suppressing Southern Ocean SST variability does not impact the Southern Annular Mode, suggesting air–sea feedbacks do not play an important role in the persistence of the Southern Annular Mode in our model. Suppressing Southern Ocean SST variability does lead to robust mean-state changes in SST and sea ice. Changes in mixed layer processes and convection associated with the SST restoring lead to SST warming and a sea ice decline in southern high latitudes, and SST cooling in midlatitudes. These results highlight the impact non-linear processes can have on a model’s mean state, and the need to consider these when performing simulations of the Southern Ocean.