A Study of the North Water Polynya Ice Arch using Four Decades of Satellite Data

Abstract Polynyas are sections of the polar ocean that remain relatively ice-free during winter, imparting significant physical and biological impact on the region. The North Water polynya (NOW) situated between Ellesmere Island and Greenland is the largest recurring Arctic polynya. Historically, th...

Full description

Bibliographic Details
Published in:Scientific Reports
Main Author: Vincent, R. F.
Format: Article in Journal/Newspaper
Language:English
Published: Springer Science and Business Media LLC 2019
Subjects:
Online Access:http://dx.doi.org/10.1038/s41598-019-56780-6
http://www.nature.com/articles/s41598-019-56780-6.pdf
http://www.nature.com/articles/s41598-019-56780-6
Description
Summary:Abstract Polynyas are sections of the polar ocean that remain relatively ice-free during winter, imparting significant physical and biological impact on the region. The North Water polynya (NOW) situated between Ellesmere Island and Greenland is the largest recurring Arctic polynya. Historically, the NOW forms every season when Arctic Ocean floes moving southward through Nares Strait become congested and form an ice arch that defines the northern border of the polynya. This blockage usually forms during winter and breaks down in spring. It is conjectured that the polynya is maintained by latent heat of fusion from the continuous formation of new ice as floes are swept southward from the ice arch by wind and ocean currents. Analysis of four decades of satellite imagery indicates a growing instability in the location of the ice arch, challenging previous models of polynya maintenance. A linear trend of the data indicates the number of days of Nares Strait blockage has decreased 2.1 days/year between 1979 and 2019 with wide interannual variations. Prior to 2007, ice arches blocked Nares Strait an average of 177 days/year compared to 128 days/year since that time. The overall trend of reduced ice arch duration is a contributing factor to the dramatic loss of multiyear ice in the Arctic basin.