Elevated CO2 and food ration affect growth but not the size-based hierarchy of a reef fish

Abstract Under projected levels of ocean acidification, shifts in energetic demands and food availability could interact to effect the growth and development of marine organisms. Changes to individual growth rates could then flow on to influence emergent properties of social groups, particularly in...

Full description

Bibliographic Details
Published in:Scientific Reports
Main Authors: McMahon, Shannon J., Munday, Philip L., Wong, Marian Y. L., Donelson, Jennifer M.
Format: Article in Journal/Newspaper
Language:English
Published: Springer Science and Business Media LLC 2019
Subjects:
Online Access:http://dx.doi.org/10.1038/s41598-019-56002-z
http://www.nature.com/articles/s41598-019-56002-z.pdf
http://www.nature.com/articles/s41598-019-56002-z
Description
Summary:Abstract Under projected levels of ocean acidification, shifts in energetic demands and food availability could interact to effect the growth and development of marine organisms. Changes to individual growth rates could then flow on to influence emergent properties of social groups, particularly in species that form size-based hierarchies. To test the potential interactive effects of (1) food availability, (2) elevated CO 2 during juvenile development, and (3) parental experience of elevated CO 2 on the growth, condition and size-based hierarchy of juvenile fish, we reared orange clownfish ( Amphiprion percula ) for 50 days post-hatching in a fully orthogonal design. Development in elevated CO 2 reduced standard length and weight of juveniles, by 9% and 11% respectively, compared to ambient. Development under low food availability reduced length and weight of juveniles by 7% and 15% respectively, compared to high food. Parental exposure to elevated CO 2 restored the length of juveniles to that of controls, but it did not restore weight, resulting in juveniles from elevated CO 2 parents exhibiting 33% lower body condition when reared in elevated CO 2 . The body size ratios (relative size of a fish from the rank above) within juvenile groups were not affected by any treatment, suggesting relative robustness of group-level structure despite alterations in individual size and condition. This study demonstrates that both food availability and elevated CO 2 can influence the physical attributes of juvenile reef fish, but these changes may not disrupt the emergent group structure of this social species, at least amongst juveniles.