Macroinvertebrate community responses to land use: a trait-based approach for freshwater biomonitoring in Mongolia
Abstract Land-use practices in Mongolia can lead to environmental degradation and consequently affect the structure and function of biological communities. The main aim of this study was to determine land-use effects on freshwater macroinvertebrate communities based on their response to grazing and...
Published in: | Hydrobiologia |
---|---|
Main Authors: | , , , , |
Other Authors: | |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Springer Science and Business Media LLC
2020
|
Subjects: | |
Online Access: | http://dx.doi.org/10.1007/s10750-020-04220-2 http://link.springer.com/content/pdf/10.1007/s10750-020-04220-2.pdf http://link.springer.com/article/10.1007/s10750-020-04220-2/fulltext.html |
Summary: | Abstract Land-use practices in Mongolia can lead to environmental degradation and consequently affect the structure and function of biological communities. The main aim of this study was to determine land-use effects on freshwater macroinvertebrate communities based on their response to grazing and mining, using a trait-based approach (TBA). The functional structure of macroinvertebrate communities was examined using 86 categories of 16 traits. A total of 13 physical and chemical variables were significantly different among the levels of land-use intensity. Significant declines in functional diversity were observed with increased land-use intensity. The community weighted mean of 19 trait categories for 11 traits varied significantly among different levels of land-use intensity. Traits were significantly explained by environmental variables across a land-use intensity gradient. Water temperature, gravel, nitrate, silt, and cobble were the main predictor variables and explained 28% of the total variance of the trait variation. The functional structure of the macroinvertebrate community was strongly related to environmental conditions. The TBA is an important method in assessing disturbance responses in freshwater communities of steppe and taiga regions, such as in Mongolia and other countries in Central Asia and will be useful in finding best management practices for conserving aquatic ecosystems. |
---|