Role of Ural blocking in Arctic sea ice loss and its connection with Arctic warming in winter

Abstract Ural blocking (UB) is suggested as one of the contributors to winter sea ice loss in the Barents–Kara Seas (BKS). This study compares UB with Arctic warming (AW) in order to delineate the role of UB on winter sea ice loss and its potential link with AW. A detailed comparison reveals that UB...

Full description

Bibliographic Details
Published in:Climate Dynamics
Main Authors: Cho, Dong-Jae, Kim, Kwang-Yul
Other Authors: National Research Foundation of Korea
Format: Article in Journal/Newspaper
Language:English
Published: Springer Science and Business Media LLC 2020
Subjects:
Online Access:http://dx.doi.org/10.1007/s00382-020-05545-3
http://link.springer.com/content/pdf/10.1007/s00382-020-05545-3.pdf
http://link.springer.com/article/10.1007/s00382-020-05545-3/fulltext.html
Description
Summary:Abstract Ural blocking (UB) is suggested as one of the contributors to winter sea ice loss in the Barents–Kara Seas (BKS). This study compares UB with Arctic warming (AW) in order to delineate the role of UB on winter sea ice loss and its potential link with AW. A detailed comparison reveals that UB and AW are partly linked on sub-seasonal scales via a two-way interaction; circulation produced by AW affects UB and advection induced by UB affects temperature in AW. On the other hand, the long-term impacts of AW and UB on the sea ice concentration in the BKS are distinct. In AW, strong turbulent flux from the sea surface warms the lower troposphere, increases downward longwave radiation, and broadens the open sea surface. This feedback process explains the substantial sea ice reduction observed in the BKS in association with long-term accelerating trend. Patterns of turbulent flux, net evaporation, and net longwave radiation at surface associated with UB are of opposite signs to those associated with AW, which implies that moisture and heat flux is suppressed as warm and moist air is advected from mid-latitudes. As a result, vertical feedback process is hindered under UB. The qualitative and quantitative differences arise in terms of their impacts on sea ice concentrations in the BKS, because strong turbulent flux from the open sea surface is a main driving force in AW whereas heat and moisture advection is a main forcing in UB.