Modeling ocean-induced rapid Earth rotation variations: an update
Abstract We revisit the problem of modeling the ocean’s contribution to rapid, non-tidal Earth rotation variations at periods of 2–120 days. Estimates of oceanic angular momentum (OAM, 2007–2011) are drawn from a suite of established circulation models and new numerical simulations, whose finest con...
Published in: | Journal of Geodesy |
---|---|
Main Authors: | , , , |
Other Authors: | , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Springer Science and Business Media LLC
2021
|
Subjects: | |
Online Access: | http://dx.doi.org/10.1007/s00190-021-01555-z https://link.springer.com/content/pdf/10.1007/s00190-021-01555-z.pdf https://link.springer.com/article/10.1007/s00190-021-01555-z/fulltext.html |
Summary: | Abstract We revisit the problem of modeling the ocean’s contribution to rapid, non-tidal Earth rotation variations at periods of 2–120 days. Estimates of oceanic angular momentum (OAM, 2007–2011) are drawn from a suite of established circulation models and new numerical simulations, whose finest configuration is on a "Image missing" $$^\circ $$ ∘ grid. We show that the OAM product by the Earth System Modeling Group at GeoForschungsZentrum Potsdam has spurious short period variance in its equatorial motion terms, rendering the series a poor choice for describing oceanic signals in polar motion on time scales of less than $$\sim $$ ∼ 2 weeks. Accounting for OAM in rotation budgets from other models typically reduces the variance of atmosphere-corrected geodetic excitation by $$\sim $$ ∼ 54% for deconvolved polar motion and by $$\sim $$ ∼ 60% for length-of-day. Use of OAM from the "Image missing" $$^\circ $$ ∘ model does provide for an additional reduction in residual variance such that the combined oceanic–atmospheric effect explains as much as 84% of the polar motion excitation at periods < 120 days. Employing statistical analysis and bottom pressure changes from daily Gravity Recovery and Climate Experiment solutions, we highlight the tendency of ocean models run at a 1 $$^\circ $$ ∘ grid spacing to misrepresent topographically constrained dynamics in some deep basins of the Southern Ocean, which has adverse effects on OAM estimates taken along the 90 $$^\circ $$ ∘ meridian. Higher model resolution thus emerges as a sensible target for improving the oceanic component in broader efforts of Earth system modeling for geodetic purposes. |
---|