Ice in the shore zone and the geomorphology of cold coasts

Approximately 90% of Canada's ocean coastline is affected by seasonal or multiyear sea ice and winter ice develops on most lakes. Recent studies of ice effects in the shore zone have included investigations of ice-congested and protected shores in the north-west Canadian Arctic Archipelago, pro...

Full description

Bibliographic Details
Published in:Progress in Physical Geography: Earth and Environment
Main Authors: Forbes, D.L., Taylor, R.B.
Format: Article in Journal/Newspaper
Language:English
Published: SAGE Publications 1994
Subjects:
Online Access:http://dx.doi.org/10.1177/030913339401800104
http://journals.sagepub.com/doi/pdf/10.1177/030913339401800104
Description
Summary:Approximately 90% of Canada's ocean coastline is affected by seasonal or multiyear sea ice and winter ice develops on most lakes. Recent studies of ice effects in the shore zone have included investigations of ice-congested and protected shores in the north-west Canadian Arctic Archipelago, processes involved in the construction by ice of large shore ridges in the same region, direct ice scour and enhanced hydrodynamic scour in the presence of ice (strudel scour and ice wallow), particularly as potential hazards to buried pipelines in the Beaufort Sea, and the dynamics of boulder-strewn tidal flats and boulder barricades in eastern Canada. The extent and frequency of shore nourishment by ice and details of the processes involved, including the relative importance of ride-up versus pile-up, remain important research questions. Reports emphasizing the contribution of ice rafting to shoreface retreat along the Alaskan coast of the Beaufort Sea suggest the need for quantitative studies of this phenomenon in Canada, in particular with respect to prodelta sedimentation at the mouth of the Mackenzie River. The coastal zone in the Beaufort Sea is particularly sensitive to climate change through effects on thermokarst processes, rising sea level, the relation between ice cover and wave energy through fetch limitation, and potential changes involving ice dynamics and freeze-up processes.