The Bakerian lecture: On the gaseous state of matter

After referring to certain modifications in his former method of working at high pressures, the author describes some preliminary experiments which were undertaken to determine the change of capacity in the capillary bore of the glass tubes under the pressures employed. From these experiments it app...

Full description

Bibliographic Details
Published in:Proceedings of the Royal Society of London
Format: Article in Journal/Newspaper
Language:English
Published: The Royal Society 1876
Subjects:
Online Access:http://dx.doi.org/10.1098/rspl.1875.0065
https://royalsocietypublishing.org/doi/pdf/10.1098/rspl.1875.0065
Description
Summary:After referring to certain modifications in his former method of working at high pressures, the author describes some preliminary experiments which were undertaken to determine the change of capacity in the capillary bore of the glass tubes under the pressures employed. From these experiments it appears that, on raising the pressure from 5 to 110 atmospheres, the capacity was increased for each atmosphere by only 0·0000036, and that this change of capacity was chiefly due to compression of the internal walls of the glass tube. Another set of experiments was made to ascertain whether air or carbonic-acid gas is absorbed at high pressures to any appreciable extent by mercury. For the method of operating and other details reference must be made to the original memoir; but the general result is that no absorption whatever takes place, even at pressures of 50 or 100 atmospheres. The pressures are given according to the indications of the air-manometer in the absence of sufficient data (which the author hopes will be soon supplied) for reducing them to true pressures. In the mean time it is probable, from the experiments of Cailletet, that the indications of the air-manometer are almost exact at 200 atmospheres, and for lower pressures do not in any case deviate more than from the true amount. In a note which was published last year in the ‘Proceedings’ of the Society (No. 163), it was staffed that the coefficient of expansion ( a ) for heat under constant pressure changes in value both with the pressure and with the temperature. The experiments on this subject are now completed, and are described at length in this paper. The final results will be found in the two following Tables. In the first Table the values of a are referred to a unit volume at 0º and under one atmosphere. In the first column the pressure p in atmospheres is in terms of the air-manometer.