Modelling the mating system of polar bears: a mechanistic approach to the Allee effect

Allee effects may render exploited animal populations extinction prone, but empirical data are often lacking to describe the circumstances leading to an Allee effect. Arbitrary assumptions regarding Allee effects could lead to erroneous management decisions so that predictive modelling approaches ar...

Full description

Bibliographic Details
Published in:Proceedings of the Royal Society B: Biological Sciences
Main Authors: Molnár, Péter K, Derocher, Andrew E, Lewis, Mark A, Taylor, Mitchell K
Format: Article in Journal/Newspaper
Language:English
Published: The Royal Society 2007
Subjects:
Online Access:http://dx.doi.org/10.1098/rspb.2007.1307
https://royalsocietypublishing.org/doi/pdf/10.1098/rspb.2007.1307
https://royalsocietypublishing.org/doi/full-xml/10.1098/rspb.2007.1307
Description
Summary:Allee effects may render exploited animal populations extinction prone, but empirical data are often lacking to describe the circumstances leading to an Allee effect. Arbitrary assumptions regarding Allee effects could lead to erroneous management decisions so that predictive modelling approaches are needed that identify the circumstances leading to an Allee effect before such a scenario occurs. We present a predictive approach of Allee effects for polar bears where low population densities, an unpredictable habitat and harvest-depleted male populations result in infrequent mating encounters. We develop a mechanistic model for the polar bear mating system that predicts the proportion of fertilized females at the end of the mating season given population density and operational sex ratio. The model is parametrized using pairing data from Lancaster Sound, Canada, and describes the observed pairing dynamics well. Female mating success is shown to be a nonlinear function of the operational sex ratio, so that a sudden and rapid reproductive collapse could occur if males are severely depleted. The operational sex ratio where an Allee effect is expected is dependent on population density. We focus on the prediction of Allee effects in polar bears but our approach is also applicable to other species.