Hydrostatic pressure impedes the degradation of sinking copepod carcasses and fecal pellets

Abstract Fast-sinking zooplankton carcasses and fecal pellets appear to contribute significantly to the vertical transport of particulate organic carbon (POC), partly because of low temperature that decreases microbial degradation during the descent into the deep ocean. Increasing hydrostatic pressu...

Full description

Bibliographic Details
Published in:Journal of Plankton Research
Main Authors: Franco-Cisterna, Belén, Stief, Peter, Glud, Ronnie N
Other Authors: Koski, Marja, Danish National Research Foundation, Danish Center for Hadal Research, HADAL
Format: Article in Journal/Newspaper
Language:English
Published: Oxford University Press (OUP) 2024
Subjects:
Online Access:http://dx.doi.org/10.1093/plankt/fbae002
https://academic.oup.com/plankt/article-pdf/46/2/219/57138225/fbae002.pdf
Description
Summary:Abstract Fast-sinking zooplankton carcasses and fecal pellets appear to contribute significantly to the vertical transport of particulate organic carbon (POC), partly because of low temperature that decreases microbial degradation during the descent into the deep ocean. Increasing hydrostatic pressure could further reduce the degradation efficiency of sinking POC, but this effect remains unexplored. Here, the degradation of carcasses and fecal pellets of the abundant marine copepod Calanus finmarchicus was experimentally studied as a function of pressure (0.1–100 MPa). Samples were either exposed to elevated pressure in short 1-day incubations or a gradual pressure increase, simulating continuous particle sinking during a 20-day incubation. Both experiments revealed gradual inhibition of microbial respiration in the pressure range of 20–100 MPa, corresponding to 2–10-km depth. This suggests that hydrostatic pressure impedes carbon mineralization of fast-sinking carcasses and fecal pellets and enhances the deep-sea deposition rate of zooplankton-derived organic material.