Cryosphere

The cryosphere refers to the Earth’s frozen realm. As such, it includes the 10 percent of the terrestrial surface covered by ice sheets and glaciers, an additional 14 percent characterized by permafrost and/or periglacial processes, and those regions affected by ephemeral and permanent snow cover an...

Full description

Bibliographic Details
Main Authors: Hinkel, Kenneth M., Ellis, Andrew W.
Format: Book Part
Language:unknown
Published: Oxford University Press 2004
Subjects:
Ice
Online Access:http://dx.doi.org/10.1093/oso/9780198233923.003.0013
Description
Summary:The cryosphere refers to the Earth’s frozen realm. As such, it includes the 10 percent of the terrestrial surface covered by ice sheets and glaciers, an additional 14 percent characterized by permafrost and/or periglacial processes, and those regions affected by ephemeral and permanent snow cover and sea ice. Although glaciers and permafrost are confined to high latitudes or altitudes, areas seasonally affected by snow cover and sea ice occupy a large portion of Earth’s surface area and have strong spatiotemporal characteristics. Considerable scientific attention has focused on the cryosphere in the past decade. Results from 2 ×CO2 General Circulation Models (GCMs) consistently predict enhanced warming at high latitudes, especially over land (Fitzharris 1996). Since a large volume of ground and surface ice is currently within several degrees of its melting temperature, the cryospheric system is particularly vulnerable to the effects of regional warming. The Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) states that there is strong evidence of Arctic air temperature warming over land by as much as 5 °C during the past century (Anisimov et al. 2001). Further, sea-ice extent and thickness has recently decreased, permafrost has generally warmed, spring snow extent over Eurasia has been reduced, and there has been a general warming trend in the Antarctic (e.g. Serreze et al. 2000). Most climate models project a sustained warming and increase in precipitation in these regions over the twenty-first century. Projected impacts include melting of ice sheets and glaciers with consequent increase in sea level, possible collapse of the Antarctic ice shelves, substantial loss of Arctic Ocean sea ice, and thawing of permafrost terrain. Such rapid responses would likely have a substantial impact on marine and terrestrial biota, with attendant disruption of indigenous human communities and infrastructure. Further, such changes can trigger positive feedback effects that influence global climate. ...