Age-divided mean stellar populations from full spectrum fitting as the simplified star formation and chemical evolution history of a galaxy: methodology and reliability

ABSTRACT We introduce a practical methodology for investigating the star formation and chemical evolution history of a galaxy: age-divided mean stellar populations (ADPs) from full spectrum fitting. In this method, the mass-weighted mean stellar populations and mass fractions (fmass) of young and ol...

Full description

Bibliographic Details
Published in:Monthly Notices of the Royal Astronomical Society
Main Authors: Lee, Joon Hyeop, Pak, Mina, Jeong, Hyunjin, Oh, Sree
Other Authors: Korea Astronomy and Space Science Institute, National Research Foundation of Korea, MSIT, Australian Research Council
Format: Article in Journal/Newspaper
Language:English
Published: Oxford University Press (OUP) 2023
Subjects:
Online Access:http://dx.doi.org/10.1093/mnras/stad814
https://academic.oup.com/mnras/advance-article-pdf/doi/10.1093/mnras/stad814/49572452/stad814.pdf
https://academic.oup.com/mnras/article-pdf/521/3/4207/49678540/stad814.pdf
Description
Summary:ABSTRACT We introduce a practical methodology for investigating the star formation and chemical evolution history of a galaxy: age-divided mean stellar populations (ADPs) from full spectrum fitting. In this method, the mass-weighted mean stellar populations and mass fractions (fmass) of young and old stellar components in a galaxy are separately estimated, which are divided with an age cut (selected to be 109.5 yr ≈3.2 Gyr in this paper). To examine the statistical reliability of ADPs, we generate 10 000 artificial galaxy spectra, each of which consists of five random simple stellar population components. Using the Penalized PiXel-Fitting (ppxf) package, we conduct full spectrum fitting to the artificial spectra with noise as a function of wavelength, imitating the real noise of Sydney-Australian Astronomical Observatory Multi-object Integral field spectrograph (SAMI) galaxies. As a result, the Δ (= output − input) of age and metallicity appears to significantly depend on not only signal-to-noise ratio (S/N), but also luminosity fractions (flum) of young and old components. At given S/N and flum, Δ of young components tends to be larger than Δ of old components; e.g. σ(Δ[M/H]) ∼ 0.40 versus 0.23 at S/N = 30 and flum = 50 per cent. The age-metallicity degeneracy appears to be insignificant, but Δlog(age/yr) shows an obvious correlation with Δfmass for young stellar components ($\mathcal {R}\sim 0.6$). The impact of dust attenuation and emission lines appears to be mostly insignificant. We discuss how this methodology can be applied to spectroscopic studies of the formation histories of galaxies, with a few examples of SAMI galaxies.