Species-specific residence times in the aft part of a pelagic survey trawl: implications for inference of pre-capture spatial distribution using the Deep Vision system

Abstract In-trawl camera systems promise to improve the resolution of trawl sampling used to ground-truth the interpretation of acoustic survey data. In this study, the residence time of fish in front of the Deep Vision camera system, used to identify, measure and count fish inside the trawl, was an...

Full description

Bibliographic Details
Published in:ICES Journal of Marine Science
Main Authors: Underwood, Melanie J, Rosen, Shale, Engås, Arill, Jørgensen, Terje, Fernö, Anders
Other Authors: O’Neill, Finbarr, Research Council of Norway
Format: Article in Journal/Newspaper
Language:English
Published: Oxford University Press (OUP) 2018
Subjects:
Online Access:http://dx.doi.org/10.1093/icesjms/fsx233
http://academic.oup.com/icesjms/article-pdf/75/4/1393/31236595/fsx233.pdf
Description
Summary:Abstract In-trawl camera systems promise to improve the resolution of trawl sampling used to ground-truth the interpretation of acoustic survey data. In this study, the residence time of fish in front of the Deep Vision camera system, used to identify, measure and count fish inside the trawl, was analysed to determine the reliability of spatial distribution recorded by the system. Although Atlantic herring (Clupea harengus), haddock (Melanogrammus aeglefinus), and most Atlantic cod (Gadus morhua) moved quickly back through the aft part of the pelagic trawl, saithe (Pollachius virens) spent up to 4 min in front of the system. The residence time increased for saithe and cod when other individuals were present, and cod swimming in the low water flow close to the trawl netting spent longer there than cod at the centre of the trawl. Surprisingly, residence time was not related to the size of the fish, which may be explained by the collective behaviour of shoaling fish. Our findings suggest that while in-trawl images can be used to identify, measure and count most species, when sampling fast-swimming species such as saithe the position inferred from when they were imaged may not reflect the actual spatial distribution prior to capture.