Large Diversity in Nitrogen- and Sulfur-Containing Compatible Solute Profiles in Polar and Temperate Diatoms

Synopsis Intense bottom-ice algal blooms, often dominated by diatoms, are an important source of food for grazers, organic matter for export during sea ice melt, and dissolved organic carbon. Sea-ice diatoms have a number of adaptations, including accumulation of compatible solutes, that allows them...

Full description

Bibliographic Details
Published in:Integrative and Comparative Biology
Main Authors: Dawson, H M, Heal, K R, Torstensson, A, Carlson, L T, Ingalls, A E, Young, J N
Other Authors: National Science Foundation, Simons Foundation
Format: Article in Journal/Newspaper
Language:English
Published: Oxford University Press (OUP) 2020
Subjects:
Online Access:http://dx.doi.org/10.1093/icb/icaa133
http://academic.oup.com/icb/advance-article-pdf/doi/10.1093/icb/icaa133/34644315/icaa133.pdf
http://academic.oup.com/icb/article-pdf/60/6/1401/34926828/icaa133.pdf
Description
Summary:Synopsis Intense bottom-ice algal blooms, often dominated by diatoms, are an important source of food for grazers, organic matter for export during sea ice melt, and dissolved organic carbon. Sea-ice diatoms have a number of adaptations, including accumulation of compatible solutes, that allows them to inhabit this highly variable environment characterized by extremes in temperature, salinity, and light. In addition to protecting them from extreme conditions, these compounds present a labile, nutrient-rich source of organic matter, and include precursors to climate active compounds (e.g., dimethyl sulfide [DMS]), which are likely regulated with environmental change. Here, intracellular concentrations of 45 metabolites were quantified in three sea-ice diatom species and were compared to two temperate diatom species, with a focus on compatible solutes and free amino acid pools. There was a large diversity of metabolite concentrations between diatoms with no clear pattern identifiable for sea-ice species. Concentrations of some compatible solutes (isethionic acid, homarine) approached 1 M in the sea-ice diatoms, Fragilariopsis cylindrus and Navicula cf. perminuta, but not in the larger sea-ice diatom, Nitzschia lecointei or in the temperate diatom species. The differential use of compatible solutes in sea-ice diatoms suggests different adaptive strategies and highlights which small organic compounds may be important in polar biogeochemical cycles.