Larval Dispersal Modeling Suggests Limited Ecological Connectivity Between Fjords on the West Antarctic Peninsula

Synopsis Larval dispersal is a key process for community assembly and population maintenance in the marine environment, yet it is extremely difficult to measure at ecologically relevant spatio-temporal scales. We used a high-resolution hydrodynamic model and particle-tracking model to explore the di...

Full description

Bibliographic Details
Published in:Integrative and Comparative Biology
Main Authors: Ziegler, Amanda F, Hahn-Woernle, Lisa, Powell, Brian, Smith, Craig R
Other Authors: National Science Foundation
Format: Article in Journal/Newspaper
Language:English
Published: Oxford University Press (OUP) 2020
Subjects:
Online Access:http://dx.doi.org/10.1093/icb/icaa094
http://academic.oup.com/icb/advance-article-pdf/doi/10.1093/icb/icaa094/33822108/icaa094.pdf
http://academic.oup.com/icb/article-pdf/60/6/1369/34926815/icaa094.pdf
Description
Summary:Synopsis Larval dispersal is a key process for community assembly and population maintenance in the marine environment, yet it is extremely difficult to measure at ecologically relevant spatio-temporal scales. We used a high-resolution hydrodynamic model and particle-tracking model to explore the dispersal of simulated larvae in a hydrographically complex region of fjords on the West Antarctic Peninsula. Modeled larvae represented two end members of dispersal potential observed in Antarctic benthos resulting from differing developmental periods and swimming behavior. For simulations of low dispersing larvae (pre-competency period = 8 days, settlement period = 15 days, swimming downward) self-recruitment within fjords was important, with no larval settlement occurring in adjacent fjords <50 km apart. For simulations of highly dispersing organisms (pre-competency period = 35–120 days, settlement period = 30–115 days, no swimming behavior), dispersal between fjords occurred when larvae were in the water column for at least 35 days, but settlement was rarely successful even for larvae spending up to 150 days in the plankton. The lack of ecological connectivity between fjords within a single spawning event suggests that these fjords harbor ecologically distinct populations in which self-recruitment may maintain populations, and genetic connectivity between fjords is likely achieved through stepping-stone dispersal. Export of larvae from natal fjord populations to the broader shelf region (>100 km distance) occurred within surface layers (<100 m depth) and was enhanced by episodic katabatic wind events that may be common in glaciomarine fjords worldwide.