Spectral Induced Polarization of limestones: time domain field data, frequency domain laboratory data and physicochemical rock properties

Summary With advances in data acquisition and processing methods, spectral inversion of time domain induced polarization (IP) data is becoming more common. Geological interpretation of inverted spectral parameters, for instance Cole-Cole parameters, often relies on results from systematic laboratory...

Full description

Bibliographic Details
Published in:Geophysical Journal International
Main Authors: Johansson, Sara, Lindskog, Anders, Fiandaca, Gianluca, Dahlin, Torleif
Format: Article in Journal/Newspaper
Language:English
Published: Oxford University Press (OUP) 2019
Subjects:
Online Access:http://dx.doi.org/10.1093/gji/ggz504
http://academic.oup.com/gji/advance-article-pdf/doi/10.1093/gji/ggz504/30385154/ggz504.pdf
Description
Summary:Summary With advances in data acquisition and processing methods, spectral inversion of time domain induced polarization (IP) data is becoming more common. Geological interpretation of inverted spectral parameters, for instance Cole-Cole parameters, often relies on results from systematic laboratory measurements. These are most often carried out with frequency domain systems on sandstone samples. However, the two different methods of measuring the spectral IP response differ in both measurement technique and scale. One of the main objectives of the current study is, thus, to perform a direct comparison of inverted spectral parameters from time domain IP field data with frequency domain IP spectra from laboratory measurements. To achieve this, field measurements were carried out before a ∼50 m long rock core was drilled down along one of the measurement lines. Solid parts of the core were vacuum-sealed in plastic bags to preserve the natural groundwater in the samples, after which the core samples were measured with frequency domain spectral IP in laboratory. The results showed that the inverted Cole-Cole parameters closest to the borehole were comparable to the IP spectra measured at the core samples, despite differences in measurement techniques and scale. The field site chosen for the investigation was a limestone succession spanning over a well-known lithological boundary (the Cretaceous—Paleogene boundary). Little is known in previous research about varying spectral IP responses in limestones, and an additional objective of this study was, therefore, to investigate possible sources of these variations in the laboratory. The IP spectra were interpreted in light of measured lithological and physicochemical properties. The carbonate texture differed strongly across the Cretaceous—Paleogene boundary from fine-grained calcareous mudstone (Cretaceous) to more well-lithified and coarse-grained wackestone and packstone (Paleogene). Both laboratory and field spectral IP results showed that these differences cause a ...