Anisotropic Kirchhoff pre-stack depth migration at the COSC-1 borehole, central Sweden

SUMMARY A remarkably well preserved representation of a deeply eroded Palaeozoic orogen is found in the Scandinavian Caledonides, formed by the collision of the two palaeocontinents Baltica and Laurentia. Today, after 400 Ma of erosion along with uplift and extension during the opening of the North...

Full description

Bibliographic Details
Published in:Geophysical Journal International
Main Authors: Simon, H, Buske, S, Hedin, P, Juhlin, C, Krauß, F, Giese, R
Other Authors: German Research Foundation
Format: Article in Journal/Newspaper
Language:English
Published: Oxford University Press (OUP) 2019
Subjects:
Online Access:http://dx.doi.org/10.1093/gji/ggz286
http://academic.oup.com/gji/advance-article-pdf/doi/10.1093/gji/ggz286/28859642/ggz286.pdf
http://academic.oup.com/gji/article-pdf/219/1/66/28925263/ggz286.pdf
Description
Summary:SUMMARY A remarkably well preserved representation of a deeply eroded Palaeozoic orogen is found in the Scandinavian Caledonides, formed by the collision of the two palaeocontinents Baltica and Laurentia. Today, after 400 Ma of erosion along with uplift and extension during the opening of the North Atlantic Ocean, the geological structures in central western Sweden comprise far transported allochthonous units, the underlying Precambrian crystalline basement, and a shallow west-dipping décollement that separates the two and is associated with a thin layer of Cambrian black shales. These structures, in particular the Seve Nappes (upper part of the Middle Allochthons), the Lower Allochthons and the highly reflective basement are the target of the two approximately 2.5 km deep fully cored scientific boreholes in central Sweden that are part of the project COSC (Collisional Orogeny in the Scandinavian Caledonides). Thus, a continuous 5 km tectonostratigraphic profile through the Caledonian nappes into Baltica’s basement will be recovered. The first borehole, COSC-1, was successfully drilled in 2014 and revealed a thick section of the seismically highly reflective Lower Seve Nappe. The Seve Nappe Complex, mainly consisting of felsic gneisses and mafic amphibolites, appears to be highly anisotropic. To allow for extrapolation of findings from core analysis and downhole logging to the structures around the borehole, several surface and borehole seismic experiments were conducted. Here, we use three long offset surface seismic profiles that are centred on the borehole COSC-1 to image the structures in the vicinity of the borehole and below it. We applied Kirchhoff pre-stack depth migration, taking into account the seismic anisotropy in the Seve Nappe Complex. We calculated Green’s functions using an anisotropic eikonal solver for a VTI (transversely isotropic with vertical axis of symmetry) velocity model, which was previously derived by the analysis of VSP (Vertical Seismic Profile) and surface seismic data. We show, ...