Validation of a novel method to create temporal records of hormone concentrations from the claws of ringed and bearded seals

Abstract Ringed (Pusa hispida) and bearded seals (Erignathus barbatus) inhabit vast and often remote areas in the Arctic, making it difficult to obtain long-term physiological information concerning health and reproduction. These seals are experiencing climate-driven changes in their habitat that co...

Full description

Bibliographic Details
Published in:Conservation Physiology
Main Authors: Karpovich, Shawna A, Horstmann, Larissa A, Polasek, Lori K
Other Authors: Cooke, Steven, National Marine Fisheries Service
Format: Article in Journal/Newspaper
Language:English
Published: Oxford University Press (OUP) 2020
Subjects:
Online Access:http://dx.doi.org/10.1093/conphys/coaa073
http://academic.oup.com/conphys/article-pdf/8/1/coaa073/33680545/coaa073.pdf
Description
Summary:Abstract Ringed (Pusa hispida) and bearded seals (Erignathus barbatus) inhabit vast and often remote areas in the Arctic, making it difficult to obtain long-term physiological information concerning health and reproduction. These seals are experiencing climate-driven changes in their habitat that could result in physiological stress. Chronic physiological stress can lead to immunosuppression, decreased reproduction and decreased growth. Recently, keratin has become a popular matrix to measure steroid hormones, such as stress-related cortisol and reproduction-related progesterone. We developed and validated methods to extract cortisol and progesterone from the claws of adult female ringed (n = 20) and bearded (n = 3) seals using enzyme immunosorbent assays. As ringed and bearded seal claws grow, a pair of dark- and light-colored bands of keratin is deposited annually providing a guide for sampling. Two processing methods were evaluated, removal of claw material with a grinding bit or grinding followed by mechanical pulverization (102 paired samples from six claws, two each from three seals). Adding the mechanical pulverization step resulted in a 1.5-fold increase in hormone extraction. Progesterone from the proximal claw band was evaluated to biologically validate claw material as a measure of pregnancy in ringed seals (n = 14). Claws from pregnant seals had significantly higher claw progesterone concentrations than from non-pregnant seals. This suggests that the elevated progesterone associated with gestation was reflected in the claws, and that the most proximal claw band was indicative of pregnancy status at time of death. Thus, although the sample size was low and the collection dates unbalanced, this study demonstrates the potential to use claws to examine an extended time series (up to 12 yrs) of cortisol and progesterone concentrations in ringed and bearded seal claws.