Small-Prey Profitability: Field Analysis of Shorebirds’ use of Surface Tension of Water to Transport Prey

Abstract Previous laboratory studies have shown that Red-necked Phalarope (Phalaropus lobatus), Wilson’s Phalarope (P. tricolor), Western Sandpiper (Calidris mauri), and Least Sandpiper (C. minutilla) use the surface tension of water surrounding a prey item to transport it from bill tip to mouth. Al...

Full description

Bibliographic Details
Published in:The Auk
Main Authors: Estrella, Sora M., Masero, José A., Pérez-Hurtado, Alejandro
Other Authors: Hepp, G. R.
Format: Article in Journal/Newspaper
Language:English
Published: Oxford University Press (OUP) 2007
Subjects:
Online Access:http://dx.doi.org/10.1093/auk/124.4.1244
http://academic.oup.com/auk/article-pdf/124/4/1244/29692429/auk1244.pdf
Description
Summary:Abstract Previous laboratory studies have shown that Red-necked Phalarope (Phalaropus lobatus), Wilson’s Phalarope (P. tricolor), Western Sandpiper (Calidris mauri), and Least Sandpiper (C. minutilla) use the surface tension of water surrounding a prey item to transport it from bill tip to mouth. Although such experimental work suggests that many species of shorebird may be capable of surface-tension feeding, no field studies have been done that examine this possibility. We studied the occurrence and interspecific variation in the performance of surface-tension transport (STT) in wild shorebirds feeding on identical prey items in shallow water. All shorebirds videotaped—Little Stint (C. minuta), Dunlin (C. alpina), Sanderling (C. alba), Curlew Sandpiper (C. ferruginea), Common Redshank (Tringa totanus), and Black-winged Stilt (Himantopus himantopus)—used STT to feed on small prey items. Individuals employing STT used one or several cycles of jaw spreading to transport the prey contained in a drop of water upward along the bill cavity, an action indicative of STT. Two distinct types of prey transport were observed: (1) use of STT in isolation by calidridine species following the description given in previous studies (i.e., an absence of other feeding mechanisms such as tongue movements, suction, or inertial transport), and (2) STT aided by inertial transport (head jerks) as seen in Common Redshank and Black-winged Stilt. Measured prey-transport variables (number of cycles, total time, and speed of transport) varied among species. The absence of significant relationships between these variables and measures of external morphology (bill length, bill length-to-width ratio, and bill length-to-depth ratio) suggests that some interspecific variations in STT performance may be attributable to differences in internal bill morphology. We show that STT is a common feeding mechanism in small or medium- sized shorebird species that feed on small prey items in shallow water. Birds using STT transported ≤3.6× faster than the ...