Plant Phenology of the European Alps

Phenology is the study of the seasonal timing of life cycle events. The Belgian botanist Charles Morren introduced the term in 1853, which is a combination of two Greek words, φαίνω, which means to show, to bring to light, make to appear, and λόγος, which means study, discourse, or reasoning. The gl...

Full description

Bibliographic Details
Main Author: Scheifinger, Helfried
Format: Book Part
Language:unknown
Published: Oxford University Press 2021
Subjects:
Online Access:http://dx.doi.org/10.1093/acrefore/9780190228620.013.807
Description
Summary:Phenology is the study of the seasonal timing of life cycle events. The Belgian botanist Charles Morren introduced the term in 1853, which is a combination of two Greek words, φαίνω, which means to show, to bring to light, make to appear, and λόγος, which means study, discourse, or reasoning. The global change discussion has stimulated phenological research, which as a consequence greatly advanced as science and evolved to one of the main climate impact indicators. Many of the earliest systematic efforts to collect phenological observations took place in countries sharing the Alps, most of which are still operating phenological networks. These phenological data sets are generally freely available to researchers, and numerous essential contributions to the topic of phenology and climate have been built on those data sets. Plant physiological processes underlying the ability of the plants to adapt to the year-to-year variability of the climate still constitutes largely a black box. Since the experiments of René Antoine Ferchault de Reaumur in the 18th century, it is known that temperature constitutes the main environmental driver of the seasonal development of the mid- to high-latitude plants. Second to temperature, day length governs the seasonal cycle of some species as an additional factor. Therefore, temperature-driven phenological models are able to simulate the year-to-year variability of phenological entry dates accurately enough for various applications, such as climate change impact research or numerical pollen forecast models, where the beginning of flowering of some plants is linked with the release of allergic pollen into the atmosphere. Large-scale circulation patterns, like the North Atlantic Oscillation, determine the frequency and intensity of warm and cold spells and decadal temperature trends over Europe. Combined anthropogenic and natural forcings explain the advance of spring phenology over the last 50 years, which is also clearly discernible in the area of the Alps. The early phenological ...