Implications of climate change for the management of North Sea cod (Gadus morhua)

Abstract Robustness of both short-term stock biomass recovery and longer-term sustainable management strategies to different plausible climatic change scenarios were evaluated for North Sea cod (Gadus morhua), where climate was assumed to impact growth and recruitment. In the short term, climate cha...

Full description

Bibliographic Details
Published in:ICES Journal of Marine Science
Main Authors: Kell, Laurence T., Pilling, Graham M., O'Brien, Carl M.
Format: Article in Journal/Newspaper
Language:English
Published: Oxford University Press (OUP) 2005
Subjects:
Online Access:http://dx.doi.org/10.1016/j.icesjms.2005.05.006
http://academic.oup.com/icesjms/article-pdf/62/7/1483/29124125/62-7-1483.pdf
Description
Summary:Abstract Robustness of both short-term stock biomass recovery and longer-term sustainable management strategies to different plausible climatic change scenarios were evaluated for North Sea cod (Gadus morhua), where climate was assumed to impact growth and recruitment. In the short term, climate change had little effect on stock recovery, which depends instead upon reducing fishing effort to allow existing year classes to survive to maturity. In the longer term, climate change has greater effects on stock status, but higher yields and biomass can be expected if fishing mortality is reduced. Incorporating environmental covariates in stock assessment predictions will not achieve sustainable resource use. The implications of climate change for biological reference points depend upon the mechanism through which temperature acts on recruitment, i.e. on juvenile survival or carrying capacity. It is not possible to distinguish between these processes with stock assessment data sets alone. However, this study indicates that reference points based on fishing mortality appear more robust to uncertainty than those based on biomass. Ideally, simpler management procedures are required that meet pre-agreed management objectives and are robust to uncertainty about the true dynamics.