Photoinhibition of photosynthesis in Antarctic lichen Usnea antarctica. I. Light intensity- and light duration-dependent changes in functioning of photosystem II

The paper deals with the differences in sensitivity of Antarctic lichen to photoinhibition. Thalli of Usnea antarctica were collected at the James Ross Island, Antarctica (57°52´57´´W, 63°48´02´´S) and transferred in dry state to the Czech Republic. After rewetting in a laboratory, they were exposed...

Full description

Bibliographic Details
Published in:Czech Polar Reports
Main Authors: Barták, Miloš, Hájek, Josef, Očenášová, Petra
Format: Article in Journal/Newspaper
Language:unknown
Published: Masaryk University Press 2012
Subjects:
Online Access:http://dx.doi.org/10.5817/cpr2012-1-5
https://journals.muni.cz/CPR/article/viewFile/12814/11130
Description
Summary:The paper deals with the differences in sensitivity of Antarctic lichen to photoinhibition. Thalli of Usnea antarctica were collected at the James Ross Island, Antarctica (57°52´57´´W, 63°48´02´´S) and transferred in dry state to the Czech Republic. After rewetting in a laboratory, they were exposed to 2 high light treatments: short-term (30 min), and long-term (6 h). In short-term treatment, the sample were exposed to 1000 and 2000 µmol m-2 s-1 of photosynthetically active radiation (PAR). In long-term experiment, PAR of 300, 600, and 1000 µmol m-2 s-1 were used. Photosynthetic efficiency of U. antarctica thalli was monitored by chlorophyll fluorescence parameters, potential (FV/FM) and actual (FPSII) quantum yield of photochemical processes in photosystem II in particular. In short-term treatments, the F0, FV and FM signals, as well as the values of FV/FM, and FPSII showed light-induced decrease, however substantial recovery after consequent 30 min. in dark. Longer exposition (60 min) to high light led to more pronounced decrease in chlorophyll fluorescence than after 30 min treatment, however dark recovery was faster in the thalli treated before for longer time (60 min). Long-term treatment by high light caused gradual decrease in FV/FM and FPSII with the time of exposition. The extent of the decrease was found light dose-dependent. The time course was biphasic for FV/FM but not for FPSII. The study showed that wet thalli of Usnea antarctica had high capacity of photoprotective mechanisms to cope well either with short- or long-term high light stress. This might be of particular importance in the field at the James Ross Island, particularly at the begining of growing season when melting water is available and, simultaneously, high light stress may happen on fully sunny days.