Rapid spread of Neisseria gonorrhoeaeciprofloxacin resistance due to a newly introduced resistant strain in Nuuk, Greenland, 2012–2015: a community-based prospective cohort study

Objectives To determine the antimicrobial susceptibility and genotype distribution of Neisseria gonorrhoeae strains isolated from a cohort of patients in Nuuk, Greenland in order to assess the risk of rapid spread in the event of introduction of new strains. Methods Gonococcal isolates (n=102) obtai...

Full description

Bibliographic Details
Published in:BMJ Open
Main Authors: Pedersen, Michael Lynge, Poulsen, Peter, Berthelsen, Lene, Nørgaard, Christina, Hoffmann, Steen, Jensen, Jørgen Skov
Format: Article in Journal/Newspaper
Language:English
Published: BMJ 2016
Subjects:
Online Access:http://dx.doi.org/10.1136/bmjopen-2016-011998
https://syndication.highwire.org/content/doi/10.1136/bmjopen-2016-011998
Description
Summary:Objectives To determine the antimicrobial susceptibility and genotype distribution of Neisseria gonorrhoeae strains isolated from a cohort of patients in Nuuk, Greenland in order to assess the risk of rapid spread in the event of introduction of new strains. Methods Gonococcal isolates (n=102) obtained from a prospective cohort study of ciprofloxacin resistance were collected between March 2012 and February 2013. Etest minimal inhibitory concentrations (MICs) were determined for ciprofloxacin, azithromycin, ceftriaxone, penicillin, tetracycline, spectinomycin and gentamicin. All isolates were subjected to molecular typing using N. gonorrhoeae multiantigen sequence typing (NG-MAST). After the introduction of a ciprofloxacin-resistant strain in early 2014, an additional 18 isolates were characterised. Results During the study period, all 102 isolates were fully susceptible to ciprofloxacin (≤0.03 mg/L), azithromycin, spectinomycin, gentamicin and ceftriaxone. 10 different NG-MAST types circulated in Nuuk but 7 were found as single isolates, and 3 of the 7 belonged to 1 of the 3 major genogroups (G210, G9816 and G9817) together comprising 96% of the 102 isolates. ST210 accounted for 55% of the 102 strains. The newly introduced ciprofloxacin resistant strain belonged to ST2400 and dominated the population with 59% resistant strains within 6 months after its introduction. All G2400 strains had MICs≥2 mg/L. Conclusions Introduction of a ciprofloxacin-resistant strain into a very homogeneous N. gonorrhoeae population led to an explosive spread of the resistant clone, probably as a result of large sexual networks suggested by the strain homogeneity. Careful surveillance of antimicrobial susceptibility is essential to avoid widespread treatment failure in closed populations.