The response of the Arctic Ocean gas hydrate associated with subsea permafrost to natural and anthropogenic climate changes

Abstract We present an assessment of changes in the gas hydrates stability zone of the Arctic Ocean associated with subsea permafrost conditions. To evaluate the formation and dissociation of gas hydrates under the climatic conditions of the last glacial cycle, it is necessary to understand how the...

Full description

Bibliographic Details
Published in:IOP Conference Series: Earth and Environmental Science
Main Author: Malakhova, V V
Format: Article in Journal/Newspaper
Language:unknown
Published: IOP Publishing 2020
Subjects:
Online Access:http://dx.doi.org/10.1088/1755-1315/606/1/012035
https://iopscience.iop.org/article/10.1088/1755-1315/606/1/012035/pdf
https://iopscience.iop.org/article/10.1088/1755-1315/606/1/012035
Description
Summary:Abstract We present an assessment of changes in the gas hydrates stability zone of the Arctic Ocean associated with subsea permafrost conditions. To evaluate the formation and dissociation of gas hydrates under the climatic conditions of the last glacial cycle, it is necessary to understand how the thickness of the permafrost has changed after flooding by the sea. To do this, we have combined two numerical models: a model of permafrost dynamics based on the paleoclimatic scenario of changes in temperature and ocean level, and a model of the methane hydrates stability zone (MHSZ). Calculations of changes in the thickness of the submarine permafrost and the MHSZ were carried out for the period of 120 thousand years. Our results show that, although changes in the bottom water temperature over the last-decades period affect the hydrate stability zone, the main changes with this zone occurring after flooding the Arctic shelf with the seawater. As a result of the combined simulation of the permafrost and state of MHSZ, it was found that in the shallow shelf areas (lower 50 m water depth) after flooding, the hydrate presence conditions in the upper 100-meter layer of the MHSZ are violated. This suggests that the methane coming from this reservoir is concentrated in the bottom sediments of the shelf, and then released into the water, continuing to adapt to changing sea levels, rising bottom water temperatures, and subsea permafrost melting.