Dominant features of phasic evolutions in the winter Arctic-midlatitude linkage since 1979

Abstract Over the past decades, the Arctic-midlatitude linkage has been extensively explored. Recent studies have suggested that the characteristics of phasic evolutions in the relationship between the Arctic warming and midlatitudes remain elusive. Therefore, this study systematically investigates...

Full description

Bibliographic Details
Published in:Environmental Research Letters
Main Authors: Wang, Yuxin, Wu, Bingyi
Other Authors: the Key Program of National Natural Science Foundation of China, the National Key Research and Development Project of China, the National Natural Science Foundation of China, the program of CAMS
Format: Article in Journal/Newspaper
Language:unknown
Published: IOP Publishing 2024
Subjects:
Online Access:http://dx.doi.org/10.1088/1748-9326/ad7476
https://iopscience.iop.org/article/10.1088/1748-9326/ad7476
https://iopscience.iop.org/article/10.1088/1748-9326/ad7476/pdf
Description
Summary:Abstract Over the past decades, the Arctic-midlatitude linkage has been extensively explored. Recent studies have suggested that the characteristics of phasic evolutions in the relationship between the Arctic warming and midlatitudes remain elusive. Therefore, this study systematically investigates this issue by using running empirical orthogonal function and moving correlation, and the results show a phasic alternation process in the relationship between the tropospheric thickness over the Barents–Kara Seas (BKS) and East Asian temperature, characterized by a phasic weak (P1: 1979–2000)–strong (P2: 2001–2011)–weak (P3: 2012–2021) connection. Our results highlight that since the winter of 2010, despite the Arctic sea ice being in an exceptionally reduced phase and continuous Arctic warming, the Arctic-midlatitude connection has not exhibited sustained strengthening relative to P2 phase. Moreover, it is found that changes of the connection between the BKS warming and the East Asian winter Monsoon may contribute to this phasic evolution, and the Arctic Oscillation plays an important role in modulating their phasic evolutions. The conclusions of this study help to deepen our understanding of the evolution of the strength and weakness of the relationship between Arctic warming and climate variations in midlatitudes.