Tundra fire increases the likelihood of methane hotspot formation in the Yukon–Kuskokwim Delta, Alaska, USA

Abstract Rapid warming in Arctic tundra may lead to drier soils in summer and greater lightning ignition rates, likely culminating in enhanced wildfire risk. Increased wildfire frequency and intensity leads to greater conversion of permafrost carbon to greenhouse gas emissions. Here, we quantify the...

Full description

Bibliographic Details
Published in:Environmental Research Letters
Main Authors: Yoseph, Elizabeth, Hoy, Elizabeth, Elder, Clayton D, Ludwig, Sarah M, Thompson, David R, Miller, Charles E
Other Authors: National Aeronautics and Space Administration
Format: Article in Journal/Newspaper
Language:unknown
Published: IOP Publishing 2023
Subjects:
Online Access:http://dx.doi.org/10.1088/1748-9326/acf50b
https://iopscience.iop.org/article/10.1088/1748-9326/acf50b
https://iopscience.iop.org/article/10.1088/1748-9326/acf50b/pdf
Description
Summary:Abstract Rapid warming in Arctic tundra may lead to drier soils in summer and greater lightning ignition rates, likely culminating in enhanced wildfire risk. Increased wildfire frequency and intensity leads to greater conversion of permafrost carbon to greenhouse gas emissions. Here, we quantify the effect of recent tundra fires on the creation of methane (CH 4 ) emission hotspots, a fingerprint of the permafrost carbon feedback. We utilized high-resolution (∼25 m 2 pixels) and broad coverage (1780 km 2 ) airborne imaging spectroscopy and maps of historical wildfire-burned areas to determine whether CH 4 hotspots were more likely in areas burned within the last 50 years in the Yukon–Kuskokwim Delta, Alaska, USA. Our observations provide a unique observational constraint on CH 4 dynamics, allowing us to map CH 4 hotspots in relation to individual burn events, burn scar perimeters, and proximity to water. We find that CH 4 hotspots are roughly 29% more likely on average in tundra that burned within the last 50 years compared to unburned areas and that this effect is nearly tripled along burn scar perimeters that are delineated by surface water features. Our results indicate that the changes following tundra fire favor the complex environmental conditions needed to generate CH 4 emission hotspots. We conclude that enhanced CH 4 emissions following tundra fire represent a positive feedback that will accelerate climate warming, tundra fire occurrence, and future permafrost carbon loss to the atmosphere.