Evaluating sea ice thickness simulation is critical for projecting a summer ice-free Arctic Ocean

Abstract The rapid decline of Arctic sea ice, including sea ice area (SIA) retreat and sea ice thinning, is a striking manifestation of global climate change. Analysis of 40 CMIP6 models reveals a very large spread in both model simulations of the September SIA and thickness and the timing of a summ...

Full description

Bibliographic Details
Published in:Environmental Research Letters
Main Authors: Zhou, Xiao, Wang, Bin, Huang, Fei
Other Authors: National Natural Science Foundation of China, National Key Scientific Research Program of China, National Science Foundation
Format: Article in Journal/Newspaper
Language:unknown
Published: IOP Publishing 2022
Subjects:
Online Access:http://dx.doi.org/10.1088/1748-9326/ac9d4d
https://iopscience.iop.org/article/10.1088/1748-9326/ac9d4d
https://iopscience.iop.org/article/10.1088/1748-9326/ac9d4d/pdf
Description
Summary:Abstract The rapid decline of Arctic sea ice, including sea ice area (SIA) retreat and sea ice thinning, is a striking manifestation of global climate change. Analysis of 40 CMIP6 models reveals a very large spread in both model simulations of the September SIA and thickness and the timing of a summer ice-free Arctic Ocean. The existing SIA-based evaluation metrics are deficient due to observational uncertainty, prominent internal variability, and indirect Arctic response to global forcing. Given the critical roles of sea ice thickness (SIT) in determining Arctic ice variation throughout the seasonal cycle and the April SIT bridging the winter freezing and summer melting processes, we propose two SIT-based metrics, the April mean SIT and summer SIA response to April SIT, to assess climate models’ capability to reproduce the historical change of the Arctic sea ice area. The selected 11 good models reduce the uncertainty in the projected first ice-free Arctic by 70% relative to 11 poor models. The chosen models’ ensemble mean projects the first ice-free year in 2049 (2043) under the shared socio-economic pathways (SSP)2-4.5 (SSP5-8.5) scenario with one standard deviation of the inter-model spread of 12.0 (8.9) years.