Focus on recent, present and future Arctic and boreal productivity and biomass changes

Abstract The reduction of cold temperature constraints on photosynthesis in recent decades has led to extended growing seasons and increased plant productivity (greening) in significant parts of Polar, Arctic and Boreal regions, here called northern lands. However, most territories within these regi...

Full description

Bibliographic Details
Published in:Environmental Research Letters
Main Authors: Tømmervik, Hans, Forbes, Bruce C
Other Authors: Academy of Finland, JPI Climate, Norges Forskningsråd
Format: Article in Journal/Newspaper
Language:unknown
Published: IOP Publishing 2020
Subjects:
Online Access:http://dx.doi.org/10.1088/1748-9326/ab79e3
https://iopscience.iop.org/article/10.1088/1748-9326/ab79e3
https://iopscience.iop.org/article/10.1088/1748-9326/ab79e3/pdf
Description
Summary:Abstract The reduction of cold temperature constraints on photosynthesis in recent decades has led to extended growing seasons and increased plant productivity (greening) in significant parts of Polar, Arctic and Boreal regions, here called northern lands. However, most territories within these regions display stable productivity in recent years. Smaller portions of Arctic and Boreal regions show reduced productivity (browning). Summer drought and wildfires are the best documented drivers causing browning of continental areas. Yet factors like winter warming events dampening the greening effect of more maritime regions have remained elusive, least monitored and least understood. A Norway-US network project called ArcticBiomass was launched in 2013 to further reveal both positive and negative effects of climate change on biomass in Arctic and Boreal regions. This focus collection named Focus on Recent, Present and Future Arctic and Boreal Productivity and Biomass Changes includes 24 articles and is an important outcome of this work and addresses recent changes in phenology, biomass and productivity and the mechanisms. These mechanisms include former human interactions (legacies) and drivers that control such changes (both greening and browning), along with consequences for local, regional and global scale processes. We complete our synthesis by stressing remaining challenges and knowledge gaps, and provide an outlook on future needs and research questions in the study of climate and human driven interactions in terrestrial Arctic and Boreal ecosystems.