Direction reconstruction using a CNN for GeV-scale neutrinos in IceCube

Abstract The IceCube Neutrino Observatory is designed to observe neutrinos interacting deep within the South Pole ice sheet. It consists of 5160 digital optical modules, which are arrayed over a cubic kilometer from 1450 m to 2450 m depth. At the lower center of the array is the DeepCore subdetector...

Full description

Bibliographic Details
Published in:Journal of Instrumentation
Main Author: Yu, S.
Format: Article in Journal/Newspaper
Language:unknown
Published: IOP Publishing 2021
Subjects:
Online Access:http://dx.doi.org/10.1088/1748-0221/16/11/c11001
https://iopscience.iop.org/article/10.1088/1748-0221/16/11/C11001
https://iopscience.iop.org/article/10.1088/1748-0221/16/11/C11001/pdf
Description
Summary:Abstract The IceCube Neutrino Observatory is designed to observe neutrinos interacting deep within the South Pole ice sheet. It consists of 5160 digital optical modules, which are arrayed over a cubic kilometer from 1450 m to 2450 m depth. At the lower center of the array is the DeepCore subdetector. It has a denser configuration which lowers the observable energy threshold to about 10 GeV and creates the opportunity to study neutrino oscillations with low energy atmospheric neutrinos. A precise reconstruction of neutrino direction is critical in the measurements of oscillation parameters. In this contribution, I will discuss a method to reconstruct the zenith angle of 10-GeV scale events in IceCube using a convolutional neural network and compare the result to that of the current likelihood-based reconstruction algorithm.