ARISGAN: Extreme super-resolution of arctic surface imagery using generative adversarial networks
Introduction: This research explores the application of generative artificial intelligence, specifically the novel ARISGAN framework, for generating high-resolution synthetic satellite imagery in the challenging arctic environment. Realistic and high-resolution surface imagery in the Arctic is cruci...
Published in: | Frontiers in Remote Sensing |
---|---|
Main Authors: | , , , |
Other Authors: | |
Format: | Article in Journal/Newspaper |
Language: | unknown |
Published: |
Frontiers Media SA
2024
|
Subjects: | |
Online Access: | http://dx.doi.org/10.3389/frsen.2024.1417417 https://www.frontiersin.org/articles/10.3389/frsen.2024.1417417/full |
Summary: | Introduction: This research explores the application of generative artificial intelligence, specifically the novel ARISGAN framework, for generating high-resolution synthetic satellite imagery in the challenging arctic environment. Realistic and high-resolution surface imagery in the Arctic is crucial for applications ranging from satellite retrieval systems to the wellbeing and safety of Inuit populations relying on detailed surface observations. Methods: The ARISGAN framework was designed by combining dense block, multireceptive field, and Pix2Pix architecture. This innovative combination aims to address the need for high-quality imagery and improve upon existing state-of-the-art models. Various tasks and metrics were employed to evaluate the performance of ARISGAN, with particular attention to land-based and sea ice-based imagery. Results: The results demonstrate that the ARISGAN framework surpasses existing state-of-the-art models across diverse tasks and metrics. Specifically, land-based imagery super-resolution exhibits superior metrics compared to sea ice-based imagery when evaluated across multiple models. These findings confirm the ARISGAN framework’s effectiveness in generating perceptually valid high-resolution arctic surface imagery. Discussion: This study contributes to the advancement of Earth Observation in polar regions by introducing a framework that combines advanced image processing techniques with a well-designed architecture. The ARISGAN framework’s ability to outperform existing models underscores its potential. Identified limitations include challenges in temporal synchronicity, multi-spectral image analysis, preprocessing, and quality metrics. The discussion also highlights potential avenues for future research, encouraging further refinement of the ARISGAN framework to enhance the quality and availability of high-resolution satellite imagery in the Arctic. |
---|