Arctic sea ice coverage from 43 years of satellite passive-microwave observations

Satellite passive-microwave instrumentation has allowed the monitoring of Arctic sea ice over the past 43 years, and this monitoring has revealed and quantified major changes occurring in Arctic sea ice coverage. The 43-year 1979–2021 record shows considerable interannual variability but also a long...

Full description

Bibliographic Details
Published in:Frontiers in Remote Sensing
Main Author: Parkinson, Claire L.
Other Authors: Science Mission Directorate
Format: Article in Journal/Newspaper
Language:unknown
Published: Frontiers Media SA 2022
Subjects:
Online Access:http://dx.doi.org/10.3389/frsen.2022.1021781
https://www.frontiersin.org/articles/10.3389/frsen.2022.1021781/full
Description
Summary:Satellite passive-microwave instrumentation has allowed the monitoring of Arctic sea ice over the past 43 years, and this monitoring has revealed and quantified major changes occurring in Arctic sea ice coverage. The 43-year 1979–2021 record shows considerable interannual variability but also a long-term downward trend in Arctic sea ice that is clear from many vantage points: A linear-least-square trend of −54,300 ± 2,700 km 2 /year for yearly average sea ice extents; statistically significant negative trends for each of the 12 calendar months; negative trends for each of nine regions into which the Arctic sea ice cover is divided; the fact that for all 12 calendar months the highest monthly average sea ice extent came in the first 8 years of the record and the lowest monthly average sea ice extent came in the last 10 years of the record; and a prominent shortening of the sea ice season throughout much of the marginal ice zone, with the length of the sea ice season in some locations decreasing by over 100 days and some locations previously experiencing months-long sea ice seasons now typically no longer having a sea ice season at all. The overall, Arctic-wide trend value of the yearly average sea ice extents since 1979 has consistently had a negative magnitude exceeding two standard deviations of the trend line slope since 1990 and has remained in the narrow range of −53,000 km 2 /yr to −55,500 km 2 /yr since 2011.