Impact of climate change on long-term variations of small yellow croaker (Larimichthys polyactis) winter fishing grounds

Small yellow croaker ( Larimichthys polyactis ) is one of the key demersal species with high economic values and wide distribution in the China Seas. In this study, a Winter Fishing ground Abundance Index (WFAI) was developed by using fisheries survey data in 1971–1982 and used as the response varia...

Full description

Bibliographic Details
Published in:Frontiers in Marine Science
Main Authors: Zhang, Rui, Liu, Yang, Tian, Hao, Liu, Shuhao, Zu, Kaiwei, Xia, Xinmei
Format: Article in Journal/Newspaper
Language:unknown
Published: Frontiers Media SA 2022
Subjects:
Online Access:http://dx.doi.org/10.3389/fmars.2022.915765
https://www.frontiersin.org/articles/10.3389/fmars.2022.915765/full
Description
Summary:Small yellow croaker ( Larimichthys polyactis ) is one of the key demersal species with high economic values and wide distribution in the China Seas. In this study, a Winter Fishing ground Abundance Index (WFAI) was developed by using fisheries survey data in 1971–1982 and used as the response variable to investigate the impacts of environmental variables, including surface current velocity (SCV), sea surface salinity (SSS), sea surface temperature (SST), and depth (DE). A total of 45 combinatorial generalized additive models (GAMs), generalized linear models (GLMs), and random forest models (RFs) were used to select the optimal WFAI prediction. The final WFAI distribution results showed that the winter fishing ground hotspots of small yellow croaker were mainly distributed between 11°C and 16°C isotherms and between 50-m and 100-m isobaths, and the area of winter fishing ground hotspots (WFHA) significantly decreased and the hotspots tended to move northward over the past 50 years. The shape of hotspots was strongly affected by temperature fronts and salinity fronts. Analysis with the climate indices revealed that the Atlantic Multidecadal Oscillation (AMO) might have a large influence on the distribution of small yellow croaker by affecting SST and SSS in the China Seas more than the Pacific Decadal Oscillation (PDO), North Pacific Gyre Oscillation (NPGO), and Arctic Oscillation Index (AOI). The future prediction based on two extreme scenarios (RCP2.6 and RCP8.5) indicated that the hotspots would obviously move northward. These findings will serve effectively the fishery resources monitoring, management, and evaluation of small yellow croaker in the China Seas.