Using GRACE Data to Estimate Climate Change Impacts on the Earth’s Moment of Inertia

The widely used 15-year Gravity Recovery and Climate Experiment (GRACE) measured mass redistribution shows an increasing trend in the nontidal Earth’s moment of inertia (MOI). Various contributing components are independently evaluated using five high-quality atmospheric reanalysis datasets and a no...

Full description

Bibliographic Details
Published in:Frontiers in Earth Science
Main Authors: Ren, Diandong, Hu, Aixue
Format: Article in Journal/Newspaper
Language:unknown
Published: Frontiers Media SA 2021
Subjects:
Online Access:http://dx.doi.org/10.3389/feart.2021.640304
https://www.frontiersin.org/articles/10.3389/feart.2021.640304/full
Description
Summary:The widely used 15-year Gravity Recovery and Climate Experiment (GRACE) measured mass redistribution shows an increasing trend in the nontidal Earth’s moment of inertia (MOI). Various contributing components are independently evaluated using five high-quality atmospheric reanalysis datasets and a novelty numerical modeling system. We found a steady, statistically robust (passed a two-tailed t-test at p = 0.04 for dof = 15) rate of MOI increase reaching ∼11.0 × 10 27 kg m 2 /yr, equivalent to a 11.45 s μ /yr increase in the length of day, during 2002–2017. Further analysis suggests that the Antarctic ice sheet contributes the most, followed by the Greenland ice sheet, the precipitation-driven land hydrological cycle, mountain glaciers, and the fluctuation of atmosphere, in this order. Short-term MOI spikes from the GRACE measurements are mostly associated with major low/mid-latitude earthquakes, fitting closely with the MOI variations from the hydrological cycle. Atmospheric fluctuation contributes the least but has a steady trend of 0.5 s μ /yr, with horizontal mass distribution contributing twice as much as the vertical expansion and associated lift of the atmosphere’s center of mass. The latter is a previously overlooked term affecting MOI fluctuation. The contribution to the observed MOI trend from a warming climate likely will persist in the future, largely due to the continuous mass loss from the Earth’s ice sheets.