A SPECIES DISTRIBUTION MODEL OF THE ANTARCTIC MINKE WHALE (BALAENOPTERA BONAERENSIS)

The Antarctic minke whale (Balaenoptera bonaerensis) is regarded a Southern Hemisphere endemic found throughout the Southern Hemisphere, generally south of 60 degrees S in austral summer. Here they have been routinely observed in highest densities adjacent to and inside the sea ice edge, and where t...

Full description

Bibliographic Details
Main Author: Tytar, Volodymyr
Format: Other/Unknown Material
Language:unknown
Published: Center for Open Science 2022
Subjects:
Online Access:http://dx.doi.org/10.32942/osf.io/jrc8v
Description
Summary:The Antarctic minke whale (Balaenoptera bonaerensis) is regarded a Southern Hemisphere endemic found throughout the Southern Hemisphere, generally south of 60 degrees S in austral summer. Here they have been routinely observed in highest densities adjacent to and inside the sea ice edge, and where they feed predominantly on krill. Detecting abundance trends regarding this species by employing visual monitoring is problematic. Partly this is because the whales are frequently sighted within sea ice where navigational safety concerns prevent ships from surveying. In this respect species-habitat models are increasingly recognized as valuable tools to predict the probability of cetacean presence, relative abundance or density throughout an area of interest and to gain insight into the ecological processes affecting these patterns. The objective of this study was to provide this background information for the above research needs and in a broader context use species distribution models (SDMs) to establish a current habitat suitability description for the species and to identify the main environmental covariates related to its distribution. We used filtered 464 occurrences to generate the SDMs. We selected eight predictor variables with reduced collinearity for constructing the models: mean annuals of the surface temperature (degrees C), salinity (PSS), current velocity (m/s), sea ice concentration (fraction, %), chlorophyll-a concentration (mg/cub. m), primary productivity (g/cub.m/day), cloud cover (%), and bathymetry (m). Six modeling algorithms were test and the Bayesian additive regression trees (BART) model demonstrated the best preformance. Based on variable importance, those that best explained the environmental requirements of the species, were: sea ice concentration, chlorophyll-a concentration and topography of the sea floor (bathymetry), explaining in sum around 62% of the variance. Using the BART model, habitat preferences have been interpreted from patterns in partial dependence plots. Areas where the AMW ...