Summary: | Statistical analysis of the number of destructive earthquakes versus global temperature and greenhouse gases revealed very significant correlations. This is a strong indication that the frequent occurrence of major earthquakes had increased earth’s obliquity and induced both global warming and emission of greenhouse gases (GHG) in recent years. It is further shown by a simple model developed here that seismic-induced oceanic pressure could enhance the obliquity leading to increased solar radiative flux on earth. The possible increase in the planetary obliquity was substantiated by the solar radiation model SOLRAD, which simulated an associated increase of absorbed solar radiation. The model also revealed a net poleward gain of solar radiative flux with enhanced obliquity which could be the cause of the observed polar amplification of global warming and climate change. Multiple regression analysis also showed that the sudden obliquity change since 1995 played a major role in the temperature rise and GHG increase, and coincided with the 10 warmest years on record. Climate simulations conducted with the EdGCM also showed that enhanced obliquity causes increased solar radiative flux, increased air and ocean temperature, and decline of ocean ice cover. The enhanced obliquity and absorbed solar radiation could have accelerated the melting of ice sheets and glaciers, exposure and degradation of permafrost regions, increased CO2 respiration fluxes from soil, and forest fires during summer. This study confirmed in several ways that earthquake-pressured obliquity change, and not greenhouse effect, is the major mechanism governing global warming and climate change presently occurring on earth.
|