Detection thresholds of a harbour seal to repeated underwater high-frequency, short-duration sinusoidal pulses

Underwater hearing thresholds of a harbour seal (Phoca vitulina) were obtained from 1 to 64 kHz using sinusoidal pulses as short as 0.5 ms. The lowest threshold was 57 dB (re 1 μPa) at 8 kHz. Thresholds for 500- to 50-ms tones increased to about 70 dB (re 1 μPa) in the 1- to 4-kHz and 32-kHz ranges...

Full description

Bibliographic Details
Published in:Canadian Journal of Zoology
Main Author: Terhune, J. M.
Format: Article in Journal/Newspaper
Language:English
Published: Canadian Science Publishing 1988
Subjects:
Online Access:http://dx.doi.org/10.1139/z88-230
http://www.nrcresearchpress.com/doi/pdf/10.1139/z88-230
Description
Summary:Underwater hearing thresholds of a harbour seal (Phoca vitulina) were obtained from 1 to 64 kHz using sinusoidal pulses as short as 0.5 ms. The lowest threshold was 57 dB (re 1 μPa) at 8 kHz. Thresholds for 500- to 50-ms tones increased to about 70 dB (re 1 μPa) in the 1- to 4-kHz and 32-kHz ranges and to 111 dB (re 1 μPa) at 64 kHz. At 50 ms duration, thresholds were from 0 to 6 dB greater than the maximum sensitivity for each frequency tested. Thus, only very brief seal vocalizations are not as audible as longer (and equally loud) underwater calls. For pulses shorter than 400 cycles, the thresholds increased linearly with the logarithm of the number of cycles, independent of frequency (4–32 kHz). The total energy of the pulses at threshold was estimated. From 4 to 32 kHz, as the pulse durations shortened, the threshold energy value decreased and then began to increase. These findings bring into question the concept that when presented with high-frequency sound, the auditory system integrates energy for a specific time period.