Not all written in stone: interdisciplinary syntheses in echinoderm paleontology

The fossil record of the Echinodermata is relatively complete, and is represented by specimens retaining an abundance of features comparable to that found in extant forms. This yields a half-billion-year record of evolutionary novelties unmatched in any other major group, making the Echinodermata a...

Full description

Bibliographic Details
Published in:Canadian Journal of Zoology
Main Author: Mooi, Rich
Format: Article in Journal/Newspaper
Language:English
Published: Canadian Science Publishing 2001
Subjects:
Online Access:http://dx.doi.org/10.1139/z00-217
http://www.nrcresearchpress.com/doi/pdf/10.1139/z00-217
Description
Summary:The fossil record of the Echinodermata is relatively complete, and is represented by specimens retaining an abundance of features comparable to that found in extant forms. This yields a half-billion-year record of evolutionary novelties unmatched in any other major group, making the Echinodermata a primary target for studies of biological change. Not all of this change can be understood by studying the rocks alone, leading to synthetic research programs. Study of literature from the past 20 years indicates that over 1400 papers on echinoderm paleontology appeared in that time, and that overall productivity has remained almost constant. Analysis of papers appearing since 1990 shows that research is driven by new finds including, but not restricted to, possible Precambrian echinoderms, bizarre new edrioasteroids, early crinoids, exquisitely preserved homalozoans, echinoids at the K-T boundary, and Antarctic echinoids, stelleroids, and crinoids. New interpretations of echinoderm body wall homologies, broad-scale syntheses of embryological information, the study of developmental trajectories through molecular markers, and the large-scale ecological and phenotypic shifts being explored through morphometry and analyses of large data sets are integrated with study of the fossils themselves. Therefore, recent advances reveal a remarkable and continuing synergistic expansion in our understanding of echinoderm evolutionary history.