Developmental changes in circulatory vitamin A (retinol) and its transport proteins in free-ranging harbour seal ( Phoca vitulina ) pups

Although vitamin A (retinol) levels are highly regulated within individual organisms, natural (e.g., age, sex, disease) and anthropogenic (e.g., environmental contaminants) factors can affect the dynamics of this essential nutrient. In this study, we examined developmental changes in the circulatory...

Full description

Bibliographic Details
Published in:Canadian Journal of Zoology
Main Authors: Simms, Wendy, Ross, Peter S
Format: Article in Journal/Newspaper
Language:English
Published: Canadian Science Publishing 2000
Subjects:
Online Access:http://dx.doi.org/10.1139/z00-129
http://www.nrcresearchpress.com/doi/pdf/10.1139/z00-129
Description
Summary:Although vitamin A (retinol) levels are highly regulated within individual organisms, natural (e.g., age, sex, disease) and anthropogenic (e.g., environmental contaminants) factors can affect the dynamics of this essential nutrient. In this study, we examined developmental changes in the circulatory vitamin A system of free-ranging harbour seal (Phoca vitulina) pups by collecting serial blood samples from healthy known-age animals throughout their nursing period. While harbour seal pups were born with relatively low levels of circulatory retinol (144.4 ± 13.9 µg/L), nursing animals more than doubled these levels within 2 days (385.0 ± 46.9 µg/L), and levels continued to rise more gradually until weaning (431.0 ± 35.8 µg/L). Animals that were not nursing, such as orphaned (184.4 ± 34.2 µg/L), fasted (347.0 ± 14.4 µg/L), and weaned (204.5 ± 38.5 µg/L) pups, had significantly lower circulatory retinol levels. Despite the developmental changes observed in total retinol, the concentration of retinol bound by its transport proteins, retinol binding protein and transthyretin, remained relatively constant throughout the nursing period. This suggests that, like most mammals, the delivery of retinol to target tissues is highly regulated in harbour seal pups. Furthermore, the high concentrations of circulatory retinol observed in harbour seal pups may serve to saturate transport proteins, ensuring a steady delivery of vitamin A to target tissues during a period of potentially variable supply. Understanding how natural factors affect circulatory retinol and its transport proteins is an important facet of assessing the impact of environmental contaminants on vitamin A dynamics in marine mammals.