Stochastic simulation of growth loss in thinned balsam fir stands defoliated by the spruce budworm in Newfoundland

A stochastic simulation model was developed to derive a damage function for the spruce budworm, Choristoneura fumiferana Clem. (Lepidoptera: Tortricidae), and balsam fir, Abies balsamea (L.) Mill., herbivore interaction at the stand level for open-grown trees. Both aggregated and uniform models of a...

Full description

Bibliographic Details
Published in:Canadian Journal of Forest Research
Main Author: Dobesberger, Erhard John
Format: Article in Journal/Newspaper
Language:English
Published: Canadian Science Publishing 1998
Subjects:
Online Access:http://dx.doi.org/10.1139/x98-042
http://www.nrcresearchpress.com/doi/pdf/10.1139/x98-042
Description
Summary:A stochastic simulation model was developed to derive a damage function for the spruce budworm, Choristoneura fumiferana Clem. (Lepidoptera: Tortricidae), and balsam fir, Abies balsamea (L.) Mill., herbivore interaction at the stand level for open-grown trees. Both aggregated and uniform models of attack pattern by late-instar larvae based on k of the negative binomial were evaluated to determine the impact of larval density and attack pattern on the loss in stemwood volume increment of young, thinned balsam fir stands in Newfoundland. Percentage loss in stemwood increment was a nonlinear, negative exponential function of initial larval density. Implementation of control measures to prevent 50% defoliation that is caused by about 14 larvae/branch tip would result in saving 24% of the annual stemwood increment after 1 year of defoliation and about 32% after 2 years of cumulative defoliation. Aggregation of spruce budworm larvae among trees within a forest stand results in less growth loss compared with a uniform pattern of attack. The nonlinear damage function may suggest tolerance and possibly compensatory growth after herbivory by low population levels of the spruce budworm.