Genetic structure of marginal populations of white spruce ( Picea glauca ) at its northern limit of distribution in Nouveau-Québec

The genetic structure of six marginal populations of white spruce (Piceaglauca (Moench) Voss) located at Richmond Gulf in the subarctic region of Nouveau-Québec, and one southern population located at Kuujjuaraapik (Poste-de-la-Baleine) were analyzed by acrylamide gel electrophoresis for seven enzym...

Full description

Bibliographic Details
Published in:Canadian Journal of Forest Research
Main Authors: Tremblay, Monique, Simon, Jean-Pierre
Format: Article in Journal/Newspaper
Language:English
Published: Canadian Science Publishing 1989
Subjects:
Online Access:http://dx.doi.org/10.1139/x89-211
http://www.nrcresearchpress.com/doi/pdf/10.1139/x89-211
Description
Summary:The genetic structure of six marginal populations of white spruce (Piceaglauca (Moench) Voss) located at Richmond Gulf in the subarctic region of Nouveau-Québec, and one southern population located at Kuujjuaraapik (Poste-de-la-Baleine) were analyzed by acrylamide gel electrophoresis for seven enzyme systems. The analysis of 27 loci disclosed an average polymorphism of 76.2% and a level of heterozygosity of 0.319. Data based on Wright's; statistics: indicated a deficiency of heterozygotes for 60% of the loci, as calculated from the Hardy–Weinberg equilibrium. These results, coupled with the very low percentage of filled seeds in cones of all populations, suggest that a certain level of inbreeding or gene exchange among near-neighbour relatives influences the genetic structure of these populations. The genetic differentiation among populations is relatively high for a conifer [Formula: see text] and is not correlated with geographic distance. The age of trees, covering a period of 400 years affected by climatic changes, does not contribute to the genetic differentiation of the populations.