Cangene Gold Medal Award Lecture — Genomic analysis and modification of Burkholderia cepacia complex bacteriophages 1 This article is based on a presentation by Dr. Karlene Lynch at the 61st Annual Meeting of the Canadian Society of Microbiologists in St. John’s, Newfoundland and Labrador, on 21 June 2011. Dr. Lynch was the recipient of the 2011 Cangene Gold Medal as the Canadian Graduate Student Microbiologist of the Year, an annual award sponsored by Cangene Corporation intended to recognize excellence in graduate research.

The Burkholderia cepacia complex (Bcc) is a group of 17 Gram-negative predominantly environmental bacterial species that cause potentially fatal opportunistic infections in cystic fibrosis (CF) patients. Although its prevalence in these individuals is lower than that of Staphylococcus aureus and Pse...

Full description

Bibliographic Details
Published in:Canadian Journal of Microbiology
Main Authors: Lynch, Karlene H., Dennis, Jonathan J.
Format: Article in Journal/Newspaper
Language:English
Published: Canadian Science Publishing 2012
Subjects:
Online Access:http://dx.doi.org/10.1139/w11-135
http://www.nrcresearchpress.com/doi/full-xml/10.1139/w11-135
http://www.nrcresearchpress.com/doi/pdf/10.1139/w11-135
Description
Summary:The Burkholderia cepacia complex (Bcc) is a group of 17 Gram-negative predominantly environmental bacterial species that cause potentially fatal opportunistic infections in cystic fibrosis (CF) patients. Although its prevalence in these individuals is lower than that of Staphylococcus aureus and Pseudomonas aeruginosa , the Bcc remains a serious problem in the CF community because of the pathogenicity, transmissibility, and inherent antibiotic resistance of these organisms. An alternative treatment for Bcc infections that is currently being developed is phage therapy, the clinical use of viruses that infect bacteria. To assess the suitability of individual phage isolates for therapeutic use, the complete genome sequences of a panel of Bcc‐specific phages were determined and analyzed. These sequences encode a broad range of proteins with a gradient of relatedness to phage and bacterial gene products from Burkholderia and other genera. The majority of these phages were found not to encode virulence factors, and despite their predominantly temperate nature, a proof-of-principle experiment has shown that they may be modified to a lytic form. Both the genomic characterization and subsequent engineering of Bcc‐specific phages are fundamental to the development of an effective phage therapy strategy for these bacteria.