Relationships Between RNA–DNA Ratio, Prey Density, and Growth Rate in Atlantic Cod ( Gadus morhua ) Larvae

The protein, DNA, and RNA content of larvae maintained at 1.0 plankter/mL increased at the rates of 9.3, 9.9, and 9.8% per day, respectively, for the 5 wk after hatching. Protein reserves of larvae held at 0 or 0.2 plankters/mL were depleted by 45 and 35%, respectively, prior to death 12–13 d after...

Full description

Bibliographic Details
Published in:Journal of the Fisheries Research Board of Canada
Main Author: Buckley, L. J.
Format: Article in Journal/Newspaper
Language:English
Published: Canadian Science Publishing 1979
Subjects:
Online Access:http://dx.doi.org/10.1139/f79-217
http://www.nrcresearchpress.com/doi/pdf/10.1139/f79-217
Description
Summary:The protein, DNA, and RNA content of larvae maintained at 1.0 plankter/mL increased at the rates of 9.3, 9.9, and 9.8% per day, respectively, for the 5 wk after hatching. Protein reserves of larvae held at 0 or 0.2 plankters/mL were depleted by 45 and 35%, respectively, prior to death 12–13 d after hatching. Starved larvae had similar protein concentrations (percent of dry weight), lower RNA concentrations, and higher DNA concentrations than fed larvae. Larvae held at higher plankton densities had higher RNA–DNA ratios and faster growth rates than larvae held at lower plankton densities. The RNA–DNA ratio was significantly correlated (P < 0.01) with the protein growth rate. The RNA–DNA ratio appears to be a useful index of nutritional status in larval Atlantic cod (Gadus morhua) and may be useful for determining if cod larvae were in a period of rapid or slow growth at the time of capture. Key words: RNA–DNA ratio, starvation, protein, nucleic acids, growth, larval fish, Atlantic cod