An improved velocity model for the crust and upper mantle along the central mobile belt of the Newfoundland Appalachian orogen and its offshore extension

New modelling of wide-angle reflection-refraction data of the Canadian Lithoprobe East profile 91-1 along the central mobile belt of the Newfoundland Appalachian orogen reveals new features of the upper mantle, and establishes links in the crust and upper mantle between existing land and marine wide...

Full description

Bibliographic Details
Published in:Canadian Journal of Earth Sciences
Main Authors: Chian, Deping, Marillier, François, Hall, Jeremy, Quinlan, Garry
Format: Article in Journal/Newspaper
Language:English
Published: Canadian Science Publishing 1998
Subjects:
Online Access:http://dx.doi.org/10.1139/e98-042
http://www.nrcresearchpress.com/doi/pdf/10.1139/e98-042
Description
Summary:New modelling of wide-angle reflection-refraction data of the Canadian Lithoprobe East profile 91-1 along the central mobile belt of the Newfoundland Appalachian orogen reveals new features of the upper mantle, and establishes links in the crust and upper mantle between existing land and marine wide-angle data sets by combining onshore-offshore recordings. The revised model provides detailed velocity structure in the 30-34 km thick crust and the top 30 km of upper mantle. The lower crust is characterized by a velocity of 6.6-6.8 km/s onshore, increasing by 0.2 km/s to the northeast offshore beneath the sedimentary basins. This seaward increase in velocity may be caused by intrusion of about 4 km of basic rocks into the lower crust during the extension that formed the overlying Carboniferous basins. The Moho is found at 34 km depth onshore, rising to 30 km offshore to the northeast with a local minimum of 27 km. The data confirm the absence of deep crustal roots under the central mobile belt of Newfoundland. Our long-range (up to 450 km offset) wide-angle data define a bulk velocity of 8.1-8.3 km/s within the upper 20 km of mantle. The data also contain strong reflective phases that can be correlated with two prominent mantle reflectors. The upper reflector is found at 50 km depth under central Newfoundland, rising abruptly towards the northeast where it reaches a minimum depth of 36 km. This reflector is associated with a thin layer (1-2 km) unlikely to coincide with a discontinuity with a large cross-boundary change in velocity. The lower reflector at 55-65 km depths is much stronger, and may have similar origins to reflections observed below the Appalachians in the Canadian Maritimes which are associated with a velocity increase to 8.5 km/s. Our data are insufficient for discriminating among various interpretations for the origins of these mantle reflectors.