Late Quaternary sequence stratigraphy of the Mackenzie Delta

The Late Wisconsinan and Holocene sequence stratigraphy of the Mackenzie Delta provides insights into the glacial history of the region. The base of the described succession is a hummocky regional reflector interpreted to be a flooding surface formed immediately after retreat of glacial ice from the...

Full description

Bibliographic Details
Published in:Canadian Journal of Earth Sciences
Main Author: Hill, Philip R
Format: Article in Journal/Newspaper
Language:English
Published: Canadian Science Publishing 1996
Subjects:
Online Access:http://dx.doi.org/10.1139/e96-081
http://www.nrcresearchpress.com/doi/pdf/10.1139/e96-081
Description
Summary:The Late Wisconsinan and Holocene sequence stratigraphy of the Mackenzie Delta provides insights into the glacial history of the region. The base of the described succession is a hummocky regional reflector interpreted to be a flooding surface formed immediately after retreat of glacial ice from the Mackenzie Trough. Above this flooding surface, two progradational parasequences are present. The first, assigned to the transgressive systems tract, is correlated with the Tutsieta Lake readvance of the ice sheet at approximately 13 000 BP. A flooding surface forming the upper boundary of this parasequence extends inland to at least Inuvik, developing as a response to glacial retreat and early Holocene relative sea level rise. The second parasequence of Holocene deltaic deposits is assigned to the highstand systems tract and is characterized by progressive progradation of the delta into the Mackenzie Trough to a position seaward of the present delta coastline. A distinct reduction in gradient of the most recent delta clinoforms is consistent with other data suggesting regional transgression and is interpreted to represent the development of a healing-phase wedge. The reasons for this recent transgression are not clear, because relative sea level rise has decreased and sediment supply probably increased over the last 2000 years. Transgression may be related to decreased efficiency of channels, increased trapping of sediments by thermokarst lakes, overspill of the delta across the eastern margin of the valley, and (or) progressively greater exposure to wave action as the delta became less sheltered by the confines of the glacial valley.