The climatic effects of large-scale surges of ice sheets

Surges in ice masses of glacier size are now well accepted in glaciology. There seems no reason why a similar phenomenon should not occur in bodies of ice as large as continental ice sheets.If a continental ice sheet surged into the sea it would have a considerable effect on world sea-level. This is...

Full description

Bibliographic Details
Published in:Canadian Journal of Earth Sciences
Main Author: Wilson, A. T.
Format: Article in Journal/Newspaper
Language:English
Published: Canadian Science Publishing 1969
Subjects:
Online Access:http://dx.doi.org/10.1139/e69-095
http://www.nrcresearchpress.com/doi/pdf/10.1139/e69-095
Description
Summary:Surges in ice masses of glacier size are now well accepted in glaciology. There seems no reason why a similar phenomenon should not occur in bodies of ice as large as continental ice sheets.If a continental ice sheet surged into the sea it would have a considerable effect on world sea-level. This is proposed as the mechanism of past sea-level fluctuations (cyclothems) of the Carboniferous and Tertiary.The effect of a surge of the Antarctic Ice Sheet on world climate is considered, with particular reference to the origin of ice ages.The requirements of an ice-age mechanism are discussed and it is concluded that a periodic surge of the Antarctic Ice Sheet, perhaps induced by a decrease in insolation to the south polar region, has all the requirements of an ice-age inducing mechanism. In particular, any oscillating system must have capacitance (storage) and impedance (resistance). It is not easy to find a system in nature with a sufficiently long period of oscillation. However, the build up of ice on Antarctica would provide a sufficiently slow charging of storage, and the ice sheet itself would provide the storage to yield a system of long enough period.It is proposed that when the Antarctic Ice Sheet surges, a large ice shelf is produced which increases the albedo of the Earth. The resulting cooling leads to the formation of secondary ice sheets in the Northern Hemisphere, which in turn leads to a further increase in albedo and further cooling. The break up of the ice shelf and its replacement by ocean would lead to a large decrease in the Earth's albedo. The resulting warming would lead to the rapid melting of the subsiduary ice sheets and the ending of the ice age.