Stress tolerance in a polyextremophile: the southernmost insect

Since biotic interactions within the simple terrestrial communities on the Antarctic Peninsula are limited compared with tropical and temperate regions, survival is largely dictated by the numerous abiotic challenges. Our research focuses on adaptations to environmental stresses experienced by the A...

Full description

Bibliographic Details
Published in:Canadian Journal of Zoology
Main Authors: Lee, R.E., Denlinger, D.L.
Format: Article in Journal/Newspaper
Language:English
Published: Canadian Science Publishing 2015
Subjects:
Online Access:http://dx.doi.org/10.1139/cjz-2014-0147
http://www.nrcresearchpress.com/doi/full-xml/10.1139/cjz-2014-0147
http://www.nrcresearchpress.com/doi/pdf/10.1139/cjz-2014-0147
Description
Summary:Since biotic interactions within the simple terrestrial communities on the Antarctic Peninsula are limited compared with tropical and temperate regions, survival is largely dictated by the numerous abiotic challenges. Our research focuses on adaptations to environmental stresses experienced by the Antarctic midge (Belgica antarctica Jacobs, 1900), the southernmost free-living insect. Midge larvae can survive freezing and anoxia year-round. Not only can frozen larvae undergo rapid cold-hardening (RCH) at temperatures as low as –12 °C, but RCH develops more rapidly in frozen compared with supercooled larvae. Whether larvae overwinter in a frozen state or cryoprotectively dehydrated may depend on hydration levels within their hibernacula. Larvae constitutively up-regulate genes encoding heat shock proteins, as well as the antioxidant enzymes superoxide dismutase and catalase. Larvae accumulate osmoprotectants in response to freezing, desiccation, and exposure to seawater; exposure to one of these osmotic stressors confers cross-tolerance to the others. Molecular responses to dehydration stress include extensive genome-wide changes that include differential expression of aquaporins among tissues, upregulation of pathways associated with autophagy, inhibition of apoptosis, and downregulation of metabolism and ATP production.